
【深度学习系统】Lecture 2 - ML Refresher / Softmax Regression
一、问题的理解方式首先,什么是数据驱动的编程?面对经典的MNIST数据集识别任务,传统的编程思维和数据驱动的编程思维有何不同?传统编程思维: 通常从明确的问题定义和具体的算法开始。对于 MNIST 数据集识别任务,可能会首先考虑使用特定的图像处理算法,如边缘检测、特征提取等,然后设计一系列的逻辑步骤来对图像进行处理和分类。数据驱动编程思维: 更注重对数据本身的理解。会先分析 MNIST 数据集的特点,包括图像的像素分布、数字的特征等。通过对数据的观察和探索,发现数据中的模式和规律,从而决定采用何种













