一碗姜汤
码龄4年
关注
提问 私信
  • 博客:158,202
    社区:2
    158,204
    总访问量
  • 151
    原创
  • 14,446
    排名
  • 1,174
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:科学的世界谈不上真正的理解,你只是去习惯它。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2021-02-08
博客简介:

weixin_55252589的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    5
    当前总分
    1,454
    当月
    15
个人成就
  • 获得1,546次点赞
  • 内容获得18次评论
  • 获得1,587次收藏
  • 代码片获得3,980次分享
创作历程
  • 96篇
    2024年
  • 49篇
    2023年
  • 6篇
    2022年
成就勋章
TA的专栏
  • 统计学习
    23篇
  • LLM
    1篇
  • 机器学习
    10篇
  • 深度学习
    8篇
  • 强化学习
    3篇
  • 编程学习
    14篇
  • 数据结构
    10篇
  • 算法
    14篇
  • 计网
    2篇
  • 代码刷题
    15篇
  • 高并发服务器
    6篇
  • 设计模式
    31篇
兴趣领域 设置
  • 人工智能
    深度学习生成对抗网络nlp
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

179人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【深度学习系统】Lecture 2 - ML Refresher / Softmax Regression

一、问题的理解方式首先,什么是数据驱动的编程?面对经典的MNIST数据集识别任务,传统的编程思维和数据驱动的编程思维有何不同?传统编程思维: 通常从明确的问题定义和具体的算法开始。对于 MNIST 数据集识别任务,可能会首先考虑使用特定的图像处理算法,如边缘检测、特征提取等,然后设计一系列的逻辑步骤来对图像进行处理和分类。数据驱动编程思维: 更注重对数据本身的理解。会先分析 MNIST 数据集的特点,包括图像的像素分布、数字的特征等。通过对数据的观察和探索,发现数据中的模式和规律,从而决定采用何种
原创
发布博客 2024.10.15 ·
1104 阅读 ·
13 点赞 ·
0 评论 ·
12 收藏

【时频分析 02】Wingner-Ville Transform

我们今天继续学习短时傅里叶变换,看清它的特性和不足。今天要引入新的工具来弥补短时傅里叶变换的不足,尽管它自身也有不足之处(没有缺点的工具是不存在的)。
原创
发布博客 2024.08.20 ·
904 阅读 ·
18 点赞 ·
0 评论 ·
6 收藏

【大模型01】参数高效微调之LoRA

LoRA通过将原始的高秩矩阵分解为两个低秩矩阵的乘积,实现了参数数量和计算复杂度的显著降低。这种方法特别适合大规模模型的训练和推理,能够在保证模型性能的前提下,提高计算效率和资源利用率。
原创
发布博客 2024.08.09 ·
836 阅读 ·
6 点赞 ·
0 评论 ·
17 收藏

【深度学习】基于pytorch的胶囊网络实现

动态路由机制讲解:https://www.bilibili.com/video/BV1oW411H7G1/?可以看到从第六个epoch开始,acurracy呈现断崖式增长,但是前期增长却很慢,而且训练速度非常慢。Hinton论文:Dynamic Routing Between Capsules。
原创
发布博客 2024.08.02 ·
221 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

【时频分析 01】短时傅里叶变换

时频分析(Time-Frequency Analysis)我们对于一个正常的信号X(t)X(t)X(t),都希望从时域和频域两个角度进行认识。我们的采样通常是在时域上,而频域上的表达就是所谓的傅里叶变换:X^(w)=∫−∞+∞X(t)exp⁡(−jwt)dt\hat X(w)=\int_{-\infty}^{+\infty}X(t)\exp(-jwt)dtX^(w)=∫−∞+∞​X(t)exp(−jwt)dt傅里叶变换的结果可以让我们了解这个信号在各个频点上的分量的情况,或者说各个频点上的信号强
原创
发布博客 2024.08.02 ·
848 阅读 ·
31 点赞 ·
0 评论 ·
8 收藏

【数学分析02】不动点原理

数列的不动点原理(Fixed Point Theorem for Sequences)在数学分析中是一个重要的工具,用于研究数列收敛性的特性。具体来说,一个数列的“不动点”是指某个数列的一个值,当数列收敛时,其极限值就是这个不动点。最常见的不动点原理是巴拿赫不动点定理(Banach Fixed Point Theorem),也称为收缩映射定理。我们想找到这个函数的一个不动点。是一个非空的完备度量空间,并且。是一个收缩映射,即存在一个常数。根据巴拿赫不动点定理,逐渐逼近 1,即数列。
原创
发布博客 2024.06.12 ·
2284 阅读 ·
24 点赞 ·
0 评论 ·
19 收藏

【数学分析01】stolz公式

STOLZ公式是一种用于求极限的数学工具,主要用于研究两个数列的比值极限。希望这个解释对你有帮助!如果你有任何其他问题或需要进一步的例子,请告诉我。,因此无法直接应用STOLZ公式,因为我们得到了一个趋向于无穷大的结果。必须是严格单调增的数列,并且趋向于无穷大。,我们来验证是否可以应用STOLZ公式来求。注意:STOLZ公式的应用前提是。如果我们考虑一个不同的数列,例如。
原创
发布博客 2024.06.12 ·
953 阅读 ·
10 点赞 ·
0 评论 ·
7 收藏

From Nand to Tetris (I) on Coursera

发布资源 2024.06.06 ·
zip

【强化学习05】从Q学习到深度Q学习

深度Q学习(DQN)通过结合深度神经网络和Q学习,能够在复杂和高维度的状态空间中进行有效的强化学习。关键技术包括经验回放和目标网络,这些技术显著提高了训练的稳定性和效率。尽管面临一些挑战,但DQN在许多强化学习任务中表现出色,特别是在游戏和模拟环境中。
原创
发布博客 2024.05.28 ·
899 阅读 ·
16 点赞 ·
0 评论 ·
7 收藏

【强化学习04】Q学习时序差分法

在强化学习中,Q值是用来评估在某个状态(state)下执行某个动作(action)所能获得的长期回报(reward)的一个数值。Q值越高,意味着在这个状态下执行这个动作越好。即时奖励rrr:你当前动作带来的直接收益。未来奖励的预期γmax⁡a′Qs′a′γmaxa′​Qs′a′:考虑到未来所有可能的状态和动作后的最大收益,但需要折现因子γ\gammaγ来平衡现在和未来的收益。Q值更新:通过即时奖励和未来奖励的结合,不断迭代更新Q值,使其逐步逼近真实的动作价值。
原创
发布博客 2024.05.28 ·
1153 阅读 ·
24 点赞 ·
0 评论 ·
20 收藏

【数理统计03】集中不等式

集中不等式(concentration inequalities)是在概率论和统计学中用于描述随机变量(尤其是随机变量的和或函数)的集中程度的一类不等式。它们为随机变量偏离其期望值的概率提供了上界。这些不等式在很多领域都有应用,包括机器学习、统计学习理论、组合数学和随机过程等。下面介绍几种常见的集中不等式:马尔可夫不等式(Markov’s Inequality)是概率论中的一个基本不等式,用于估计随机变量大于某个正数的概率。它适用于任何非负随机变量,提供了一个简单而有用的上界。下面是马尔可夫不等式的正式陈述
原创
发布博客 2024.05.27 ·
1660 阅读 ·
9 点赞 ·
0 评论 ·
15 收藏

【Python】methodcaller的用法

是 Pythonoperator模块中的一个函数,它用于创建一个可以调用特定方法的可调用对象。这个对象可以被应用于其他对象,以便在这些对象上调用特定的方法。特别适用于函数式编程风格和对列表或其他可迭代对象应用相同的操作。以下是。
原创
发布博客 2024.05.24 ·
351 阅读 ·
4 点赞 ·
0 评论 ·
4 收藏

【计网02】电路交换、分组交换和报文交换

电路交换分组交换报文交换报文交换是分组交换的前身。在报文交换中,报文被整个地发送,而不是拆分成若干个分组进行发送交换节点将报文整体接收完成后才能查找转发表,将整个报文转发到下一个节点。因此,报文交换比分组交换带来的转发时延要长很多,需要交换节点具有的缓存空间也大很多三种交换方式的对比若要连续传送大量的数据,并且数据送时间远大于建立连接的时间,则使用电路交换可以有较高的传传输效率。然而计算机的数据传送往往是突发式的,采用电路交换时通信线路的利用率会很低。报文交换和分组交换都不需要
原创
发布博客 2024.05.24 ·
325 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

【深度学习02】注意力机制

自注意力机制可以理解为学生在课堂上做笔记时,不仅关注当前的讲课内容,还结合之前的所有笔记来理解新的信息。通过查询、键和值向量的计算,模型能够灵活地整合和理解复杂的信息。
原创
发布博客 2024.05.24 ·
1131 阅读 ·
34 点赞 ·
0 评论 ·
30 收藏

【算法12】单调栈

单调栈是一种特殊的栈数据结构,通常用于解决一些特定类型的算法问题,例如找到数组中每个元素的下一个更大(或更小)元素。
原创
发布博客 2024.05.24 ·
278 阅读 ·
3 点赞 ·
0 评论 ·
10 收藏

【计网01】因特网概述

我们有时并没有严格区分互联网和因特网这两个名词,许多人口中的互联网实际上是指因特网。
原创
发布博客 2024.05.24 ·
292 阅读 ·
6 点赞 ·
0 评论 ·
1 收藏

【数理统计02】延森Jensen‘s不等式的证明

延森不等式(Jensen’s Inequality)是凸函数理论中的一个重要结果,广泛应用于概率论、统计学和优化理论等领域。对于连续情形,可以通过类似的方法,考虑连续随机变量的概率密度函数,使用积分形式得到同样的结果。:将凸函数定义扩展到一般情况,对于任意的有限个数。综上所述,延森不等式对于离散和连续情形都成立。:利用这一步骤得到的结果,证明对任意随机变量。:利用凸函数的定义,我们首先对于简单情形。:将这个不等式扩展到有限个点的情况。是凸函数,当且仅当对于任意的。:首先考虑两个点的情况,设。
原创
发布博客 2024.05.23 ·
1642 阅读 ·
15 点赞 ·
0 评论 ·
17 收藏

【机器学习01】基本概念

机器学习是计算机科学的一个分支,通过算法和统计模型使计算机系统能够在没有明确指令的情况下执行特定任务。机器学习的核心思想是从数据中学习规律,并基于这些规律进行预测或决策。
原创
发布博客 2024.05.21 ·
994 阅读 ·
8 点赞 ·
0 评论 ·
15 收藏

【Python设计模式26】访问者模式

passpass")")pass访问者模式是一种行为型设计模式,通过将数据结构与作用于结构上的操作解耦,使得增加新的操作变得容易。访问者模式适用于对象结构稳定而操作多变、需要对对象结构中的对象进行不同操作以及需要将无关行为分离到不同类中的场景。合理应用访问者模式,可以提高系统的灵活性和可维护性。理解并掌握访问者模式,有助于在实际开发中构建高效、灵活的系统。
原创
发布博客 2024.05.21 ·
541 阅读 ·
22 点赞 ·
0 评论 ·
8 收藏

【Python设计模式25】解释器模式

pass解释器模式是一种行为型设计模式,通过定义一个语言的文法表示,并建立一个解释器来解释语言中的句子。解释器模式适用于简单文法的解释、领域特定语言和可扩展的文法规则的场景。合理应用解释器模式,可以提高系统的灵活性和可维护性。理解并掌握解释器模式,有助于在实际开发中构建高效、灵活的系统,特别是在需要动态解释或运行时解释的场景中。
原创
发布博客 2024.05.21 ·
462 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏
加载更多