梁宇豪∣融入城市空间因素的通勤异质性多层解析

本文通过分析深圳市的通勤数据,发现个体差异是通勤异质性最主要来源,同时交通小区的土地利用混合度和组团的职住匹配度、租房便捷度对通勤时间与距离有显著影响。模型显示,提高土地利用多样性、职住平衡和住房结构优化能有效缩短平均通勤时间与距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面:

居民通勤特征受到个体社会经济属性与城市空间等多层面因素影响常表现出异质性。然而现有的通勤影响因素建模多考虑个体属性及区域建成环境,但对于多中心组团城市而言,综合各组团的职住因素能更全面地解析通勤特征的异质性,同时能对空间因素的作用范围有所甄别。以具有多中心组团结构的深圳市为例,分析所识别组团及不同群体的通勤异质性。考虑个体层的个人与家庭社会经济特征、交通小区层的建成环境特征及组团层的职住特征,建立居住端通勤时间与距离的三层线性模型,综合解析空间多层次及群体因素对城市通勤特征的影响机制。模型分析结果表明,个体差异是通勤异质性最主要来源,此外提高交通小区层的土地利用混合度以及组团层的职住匹配度、租房便捷度有助于缩短平均通勤时间与距离。

0a3afb822496e63544b379a38b2200b0.jpeg

梁宇豪

深圳大学土木与交通工程学院 硕士

研究背景

伴随着城镇化进程的持续推进,城市职住空间不断重构,错位加剧[1]。通勤时间与距离不断延长,进而诱发潮汐性交通拥堵、环境污染加重、宜居性大大降低等一系列连锁问题[2]。因此,探究影响城市通勤特征的因素得到了国内外学者的广泛关注,主要涉及阶层(不同群体)与空间等方面[3]

多位学者针对不同城市居民通勤特征进行描述性对比分析,发现通勤特征在城市空间与不同群体上表现出明显的异质性[4-6]。关于通勤的空间异质性,有学者将低收入群体依据住区类型进行分类,其中城中村与工厂家属区的通勤距离更短[4]。类似地,交通小区也被分成居住为主、平衡型、就业为主三类,其中居住为主的交通小区的平均通勤距离最长[5]。而对于不同群体,以往研究主要分析了不同个体与家庭的社会经济属性特征,如男性、中年人、文化程度高、管理层、外来人口、已婚的群体通勤时间与距离更长;家庭特征中购房、户收入高、家庭规模大、拥有小汽车的群体通勤时间与距离更长[6]

除社会经济属性外,区域的建成环境是以往研究中建模的重要因素。建成环境的定义几经演化和扩展,一般认为是土地利用、交通、城市设计、建筑物要素所构成的物质环境[7]。研究者以多项Logit回归[8]、多层线性模型[9]等方式分析建成环境与通勤时间、距离及方式之间的关系。

但是通勤出行从本质上是派生性需求,具有特定的出行目的,因职住地的分离而存在。在城市空间重构背景下,职住空间特征对通勤需求与组织模式具有重要塑造作用[10-11]。因此,构建通勤差异的影响因素分析模型时只考虑个体和建成环境的影响相对不足,还应该对合适空间范围内的职住特征加以考量。而多中心组团的城市规划理念由来已久,即在各组团内具备必要的商业、医疗、休闲娱乐、交通等生活配套服务设施[12],因此应基于职住平衡理念就组团层面的职住特征对通勤的影响进行分析。但是已有的组团规划思路是基于既有的经验从街道层面聚合职住要素,对居民实际的出行范围缺乏考虑,大小趋于匀质,其对通勤特征的影响有待定量模型进行评估。

为顾及空间与群体的通勤异质性,考虑组团层面职住结构对通勤特征的影响,本文以多中心组团城市深圳为例,对通勤模型异质性的影响因素进行建模和解析。首先,基于手机信令数据构建出行网络,通过社区发现算法(Community Detection)精细识别城市出行组团。然后,依据不同类型影响因素的作用范围,使用居民调查数据,从通勤居住端建立包括个体层、交通小区层、组团层在内的多层线性模型(Hierarchical Liner Model),分别对应个体与家庭社会经济特征、建成环境特征、职住结构特征,尝试探索个体通勤异质性的影响机理,分析城市结构对通勤行为的影响。

研究区域与数据

本文以深圳为研究区域,使用的基础空间单元为491个交通小区。主要数据为手机信令数据与居民出行调查数据。手机信令数据相比传统调查样本量更大,出行链更加完整,适合用于识别组团层的出行网络构建。首先利用手机信令数据判断驻留,同一基站覆盖范围停留超过30 min为一次驻留,两次驻留之间为一次出行。原始数据被集计在500 m网格,具体包括106 119 030条出行记录,时间为2017年10月16—22日,共5个工作日。

不同社会经济属性群体的通勤特征来源于深圳市2016年居民出行调查数据,包括6.8万份家庭户信息、15万条个人信息及27万条出行信息。相比公交刷卡数据、出租汽车数据等,居民出行调查数据覆盖的区域与群体更加全面,并具有丰富的个体与家庭属性,是群体通勤特征研究的重要数据源。

本文使用的手机信令数据(2 000万人次·d-1)与扩样后居民出行调查数据(3 100万人次·d-1)的单日出行量及方向性大体一致(见图1),两类数据的出行量在行政区、街道两个层面的相关系数均大于0.9。因此,考虑两类数据样本差异性,将手机信令数据和居民出行调查数据分别用于出行组团识别及个体通勤异质性分析相对合理。此外,使用建筑普查数据、轨道交通车站数据、公共汽车站数据和路网数据描述深圳市土地利用与交通设施等特征,以构建造成通勤差异的影响因素分析模型。

f3a93f8442a3932a0c21f154612b9208.jpeg

图1 两类数据所得期望线对比

出行组团识别

深圳市在建市规划之初,采取多中心组团结构规划方案,但是经过多年的发展,人口增加、二线关撤销、房价上涨、大量居民从原关内(南山区、福田区、罗湖区及盐田区)迁居到原关外地区,之前规划的多中心组团结构与现有城市居民实际出行特征的匹配程度变化较大。因此,本文首先利用手机信令数据识别深圳市当前的组团结构状态。

本文参考已有相关研究[13],使用Infomap社区发现算法进行城市组团识别。Infomap社区发现算法[14]是基于信息论中优化平均编码长度的思想,通过分层编码的形式最小化随机游走形成序列编码长度,以获得社区划分的映射平衡算法。对于出行组团识别而言,将城市空间单元抽象成节点,不同空间单元之间的出行联系强度抽象为边的权重构建出行网络,从而使用Infomap社区发现算法让出行联系相对紧密的区域节点聚合成一个社区,判别社区内外节点联系紧密或稀疏的结构特征,实现组团识别。该算法被认为具有超参数少、能够较好识别小规模社区的优点[15]。以深圳市的491个交通小区为网络节点,利用手机信令数据累计的各交通小区间的出行量为边构造出行网络(见图2)。然后,使用Infomap算法识别出11个出行组团,如图3所示。

28e67adffa2a244f2ed7c2daeed96ea3.jpeg

图2 手机信令数据出行网络

1cbb83c654c8f19257a7130a98005049.jpeg

图3 基于交通小区和手机信令数据识别的出行组团

外部组团与行政边界贴合较好,如盐田组团、大鹏组团、西部高新组团与盐田区、大鹏区、光明区基本重合。核心组团都存在跨行政区分布的现象。例如,福田区、罗湖区以及龙岗区的布吉、南湾街道的大部分区域被聚合成中心组团。整体而言,在市中心和近中心区域,出行组团突破了行政区划边界,体现出跨区出行特征;在城市边缘区域,出行组团范围较小,同一个区内划分为多个组团。该组团模式体现了深圳市近郊区的居住密集、中心城区就业集聚的空间分布格局。

为对所识别组团的质量进行评价,进一步使用归一化互信息(Normalized Mutual Information, NMI)[13]、调整兰德系数(Adjusted Rand Index, ARI)[16]对比所识别的出行组团与行政区、规划组团中各交通小区的组团归属。计算结果表明,出行组团—规划组团之间的NMI,ARI值均比出行组团—行政区之间大,说明出行组团与规划组团在空间划分上更贴近,但规划组团的大小相对匀质,不够精细(见表1)。

表1 组团识别指标评价

fe998b919e9ed2d1f6b2bbfb78c4682a.jpeg

通勤异质性分析

1

组团层

在识别的出行组团的基础上,结合深圳市2016年居民出行调查数据,针对通勤人口,从居住端分析各组团的通勤特征(通勤时间、距离和方式)异质性,描绘城市各出行组团的通勤差异性格局。中心组团、宝安-南山组团、龙华南部组团、龙岗-坪山组团的平均通勤时间大于28 min,平均通勤距离大于5 km,均比其余组团更长,说明该类组团的职住空间错配相对明显(见图4)。龙岗-坪山组团平均通勤距离6.6 km,但其通勤时间却并非最长。这可能是因为该组团缺乏地铁设施,主要依赖干线路网进行通勤,而道路运行状况较好,故通勤效率较高。此外,西部工业组团、西部高新组团、石岩区域组团通勤时间与距离较短,其对应的居民出行调查数据中第二产业从业比例分别为49%,55%,38%,均明显高于全市平均水平。这表明该类组团的第二产业从业比例较高与区域内职住自足性较好具有一定的关联性。

ad6191241f477ead10ec084707bba526.jpeg

图4 深圳市各组团的通勤时间与距离

2

交通小区层

对比平均通勤时间与平均通勤距离的空间分布,平均通勤时间长的小区明显比平均通勤距离长的小区更远离城市核心区域(见图5、图6)。这反映出不同交通小区在交通设施水平方面的差异,靠近城市核心区域的交通小区的公共交通设施覆盖、道路网密度等优于外围的区域,能在单位时间内实现更长距离的通勤。

ea07006216e1f6020bf3b061d8ee3d55.jpeg

图5 平均通勤时间分布

b1f15c76fb8474c749443294d9857a32.jpeg

图6 平均通勤距离分布

3

个体层

除通勤特征在空间层面的异质性,本文还关注不同社会经济属性群体的通勤差异(见图7)。以性别、年龄、户收入(即家庭年收入)、文化程度、职业为特征划分通勤群体,发现不同群体间的通勤时间与距离具有明显异质性。其中,社会经济状况越好的群体通勤时间与距离越长。综合各类划分发现,男性、40~50岁、户收入大于等于20万元、文化程度高、管理层与专业技术人员的平均通勤时间与距离较长,与相关研究结果一致[6]。而部分群体在交通工具使用上处于劣势,通勤效率较低,例如,女性、18~30岁、户收入小于10万元、初中及以下文化程度、技术工人在单位时间内通勤距离较短。由于技术工人这类年轻、学历较低的群体多居住在就业岗位附近,如工厂提供的宿舍,这整体上决定了不同学历、经济收入群体在通勤特征上的差异。以下部分将对影响通勤异质性的因素进行更准确的分析。

ce329e2bdee99f11f1cbbded61869b15.jpeg

图7 不同属性出行者的通勤时间与距离

影响因素多层解析

1

模型构建

根据以上描述性分析的结果,个体的通勤差异受到个体层面与空间层面的嵌套因素影响。而当涉及嵌套数据结构时,一般线性回归模型对残差独立性、正态性及方差恒定的基本假设不再成立[17]。因此,使用多层线性模型,以考虑组间变异的影响。

根据研究的实际假设,一般会选择两层或三层线性模型。结合深圳市组团结构的特征,构建个体层、交通小区层、组团层三层线性模型,用以解释不同群体的通勤差异性。基于通勤异质性的描述性分析,本模型的基本假设是:首先,个体的通勤时间与距离主要由个体的社会经济属性决定,社会经济属性更好的个体倾向于更长的通勤时间与距离;其次,个体的通勤异质性也会受到所在交通小区建成环境的影响,交通设施以及区位特性会影响通勤效率;而个体能否在所居住的出行组团内获得就业岗位,则决定其是否需要更长距离的通勤。模型的完整形式如下:

个体层

5f8d358f8737eab8bda6211580b03bd7.jpeg

交通小区层

2ad9cdf7184bf9a329c8dbcee744b051.jpeg

组团层

b7f91f78a6bff28aabdf655c0c9eb7e0.jpeg

式中:Yijk为因变量,即位于组团k、交通小区j的个体i的通勤时间或距离;Xn,ijkZp,jkCq,k分别为个体层、交通小区层、组团层的第npq个解释变量;π0jk为截距,中心化后可代表组团k、交通小区j中因变量的均值;βn0kγnp0分别为相应交通小区层、组团层的固定效应;πnjkβ0pkγ00q等为对应解释变量的斜率;eijkrnjkunpk等分别为各层的随机效应,假设服从正态分布。

2

解释变量

基于模型假设,分别统计个人与家庭的社会经济属性、居住地所在交通小区的建成环境指标、组团的职住特征指标。由于通勤样本量小于5的交通小区的参数估计无法收敛[18],所以需要进一步对整体的通勤样本进行筛选,剔除样本量不足的交通小区的数据。最后,筛选得到涉及393个交通小区的8.7万条通勤记录。筛选后的绝大部分交通小区样本充足(大于30个),满足参数估计要求。

本文仅基于单一属性对群体进行划分,尚未进行关联和交叉分析。1)个体层。参考相关研究[9],个体层以性别、年龄、文化程度、职业等变量代表个人社会经济特征,以户收入、住房来源、家庭规模及拥车代表家庭社会经济特征。在解释变量的处理中,个体层分类变量的分组不等距,在考虑模型样本量足够收敛的同时对年龄、文化程度和户收入设置哑变量。2)交通小区层。参考建成环境特征的指标选取[8],交通小区层的解释变量包括交通便利度、土地利用多样性和区域可达等三方面特征,共6个解释变量。其中,轨道交通车站覆盖、公共汽车站密度、平均路网密度用以代表小区的交通便利程度;土地利用多样性使用土地利用混合度进行测度,采用熵指数法[19];区域可达包括距主中心距离及就业可达性两个变量,用以代表通勤者所在交通小区的区位特性。距主中心距离根据交通小区形心到福田市民中心的直线距离计算得到;就业可达性的计算采用势能模型[20]。3)组团层。依据职住平衡的规划理念,区域职住匹配、居住及产业结构会深刻影响居民出行行为。基于此,组团层的职住结构特征选取了4个变量,其中,居住者外出就业比例表征组团内部职住匹配关系;第二产业占比和工业用地密度用以表征组团产业结构;租房比例则代表整体的住房结构。具体解释变量设置如表2所示。

表2 模型解释变量

2510643fcc37b0b922078d057e559746.jpeg

3

模型分析结果

根据完整模型标定结果(见表3),得到如下主要结论。1)个体层中除年龄与住房来源外,其余变量的通勤时间与距离差异均显著。个体特征中,男性、本科及以上文化程度、管理层或专业技术人员的通勤时间与距离显著更长;家庭特征中,户收入小于10万元的通勤时间与距离都更短,而拥车家庭的通勤时间与距离更长,但是户收入大于等于30万元、家庭规模的两个变量只在通勤距离上显著,表面该类群体在交通工具使用上具有一定优势,通勤效率较高。2)交通小区层中,土地利用混合度是唯一显著的解释变量,表明提高土地利用多样性确实可以降低通勤时间与距离。3)组团层中,显著的变量有居住者外出就业比例、租房比例,说明区域内职住适配和住房结构的优化也有助于缩短平均通勤时间与距离。

表3 完整模型参数标定结果

3bd847e4de48a0e205a5e097f1653f94.jpeg

注:P值<0.01为**,<0.05为*。

写在最后

通勤异质性影响因素解析关乎不同人群居住、就业的社会公平问题,是城市管理者制定针对性政策(如可负担性住房的供给与分配)的重要参考依据。针对通勤异质性建模,以往研究多考虑个体因素和建成环境因素,对城市空间因素的影响关注不足,对多中心组团城市的通勤异质性解析缺乏实证经验。基于此,本文以深圳市为例,通过识别不同组团与不同社会经济属性群体的通勤特征,在个体、交通小区、组团三个层面,揭示了影响通勤空间与群体异质性的主要因素。综合描述性分析及多层线性模型结果显示,个体通勤异质性与区域层面的交通设施水平、个体的社会经济状况具有较为紧密的联系。其中,具有较好社会经济状况的群体被证明具有更长的通勤时间与距离,并能通过交通工具的优势抵消职住距离较长的劣势。相对空间因素,个体层的变量解释作用更大。不同年龄与住房来源的群体通勤差异不显著,而男性、本科及以上、管理层或专业技术人员、拥车家庭的群体具有显著更长的通勤时间与距离。户收入大于等于30万元的群体具有通勤方式优势,通勤效率更高;同时,随着家庭规模增大,通勤效率也会变高。

另外,此研究证明了考虑空间多层次及群体因素对个体通勤异质性进行分层建模的必要性和可行性,模型具有顾及不同影响因素的合适空间作用范围的优势。结合模型参数标定结果,混合土地利用、适配组团就业与居住以及保障可负担性住房供给有助于缩短平均通勤时间与距离,缓解通勤压力。

参考文献(上滑查看全部):

[1] 柴彦威,张艳,刘志林. 职住分离的空间差异性及其影响因素研究[J]. 地理学报,2011,66(2):157-166.

CHAI Y W, ZHANG Y, LIU Z L. Spatial differences of home-work separation and the impacts of housing policy and urban sprawl: evidence from household survey data in Beijing[J]. Acta geographica sinica, 2011, 66(2): 157-166.

[2] 孟斌. 北京城市居民职住分离的空间组织特征[J]. 地理学报,2009,64(12):1457-1466.

MENG B. The spatial organization of the separation between jobs and residential locations in Beijing[J]. Acta geographica sinica, 2009, 64(12): 1457-1466.

[3] 郝媛,王继峰,于鹏,等. 从阶层、空间、交通互动视角解读交通规划[J]. 城市交通,2021,19(1):29-38.

HAO Y, WANG J F, YU P, et al. Discussion on transportation planning through interaction of social class, space and transportation[J]. Urban transport of China, 2021, 19(1): 29-38.

[4] 侯学英,吴巩胜. 低收入住区居民通勤行为特征及影响因素:昆明市案例分析[J]. 城市规划,2019,43(3):104-111.

HOU X Y, WU G S. Analysis on commuting characteristics of residents in low-income neighborhood and the influencing factors: Kunming as a case[J]. City planning review, 2019, 43(3): 104-111.

[5] 徐艺轩,周锐,戴刘冬,等. 我国中部中等城市职住分离的空间差异及其影响因素:以漯河市为例[J]. 城市发展研究,2014,21(12):52-58.

XU Y X, ZHOU R, DAI L D, et al. Spatial differences and the impacts of the separation between jobs and residential locations: evidence from household survey data in Luohe City[J]. Urban development studies, 2014, 21(12): 52-58.

[6] 董佳楠,汪德根,赵美风. 2000年以来中国城市职住空间格局进展综述与研究框架[J]. 中国名城,2021,35(1):30-39.

DONG J N, WANG D G, ZHAO M F. Overview and research framework of the progress of urban job-housing spatial pattern in China since 2000[J]. China ancient city, 2021, 35(1): 30-39.

[7] HANDY S L, BOARNET M G, EWING R, et al. How the built environment affects physical activity: views from urban planning[J]. American journal of preventive medicine, 2002, 23(2): 64-73.

[8] 但波. 城市建成环境对居民通勤行为的影响[D]. 上海:华东师范大学,2016.

DAN B. Impact of urban built environment on the residential commuting behavior: the case of Shanghai[D]. Shanghai: East China Normal University, 2016.

[9] 尹超英,邵春福,王聘玺,等. 基于多层模型的城市建成环境对通勤行为的影响[J]. 交通运输系统工程与信息,2018,18(2):122-127.

YIN C Y, SHAO C F, WANG P X, et al. Impacts of built environment on commuting behavior based on a multilevel modeling approach[J]. Journal of transportation systems engineering and information technology, 2018, 18(2): 122-127.

[10] 赵晖,杨开忠,魏海涛,等. 北京城市职住空间重构及其通勤模式演化研究[J]. 城市规划,2013(8):33-39.

ZHAO H, YANG K Z, WEI H T, et al. Job-housing space restructuring and evolution of commuting patterns in Beijing Metropolitan Area[J]. City planning review, 2013(8): 33-39.

[11] 孙斌栋,李南菲,宋杰洁,等. 职住平衡对通勤交通的影响分析:对一个传统城市规划理念的实证检验[J]. 城市规划学刊,2010(6):55-60.

SUN B D, LI N F, SONG J J, et al. A study on the impact of job-housing balance on commuting travels: an empirical test of a traditional idea in the field of urban planning[J]. Urban planning forum, 2010(6): 55-60.

[12] 深圳市人民政府. 深圳市城市总体规划(2010—2020)[R/OL]. 深圳:深圳市人民政府,2010[2021-07-13]. http://www.sz.gov.cn/attachment/0/684/684608/1344759.pdf.

[13] ZHOU M, YANG Y, LI Q Q, et al. Portraying temporal dynamics of urban spatial divisions with mobile phone positioning data: a complex network approach[J]. International journal of geo-information, 2016, 5(12): 240.

[14] ROSVALL M, AXELSSON D, BERGSTROM C T. The map equation[J]. The European physical journal special topics, 2009, 178(1): 13-23.

[15] 方斌. 复杂网络社区探测算法及其分辨率限制研究[D]. 上海:华东师范大学,2019.

FANG B. Complex network community detection algorithm resolution and limit research[D]. Shanghai: East China Normal University, 2019.

[16] JIA T, YU X, SHI W, et al. Detecting the regional delineation from a network of social media user interactions with spatial constraint: a case study of Shenzhen, China[J]. Physica A: statistical mechanics and its applications, 2019, 531: 121719.

[17] 张雷,雷雳,郭伯良. 多层线性模型应用[M]. 北京:教育科学出版社,2003.

ZHANG L, LEI L, GUO B L. Applied multilevel data analysis[M]. Beijing: Educational science publishing house, 2003.

[18] HOX J J, MOERBEEK M, VAN DE SCHOOT R. Multilevel analysis: techniques and applications: 3rd ed.[M]. New York: Routledge, 2017.

[19] CERVERO R. Mixed land-uses and commuting: evidence from the American housing survey[J]. Transportation research part A: policy and practice, 1996, 30(5): 361-377.

[20] 刘贤腾. 空间可达性研究综述[J]. 城市交通,2007,5(6):36-43.

LIU X T. General description of spatial accessibility[J]. Urban transport of China, 2007, 5(6): 36-43.

《城市交通》2022年第4期刊载文章

作者:梁宇豪,高琦丽,郭莉,乐阳

8b9f81f14ee418b407a637b9a0786a15.gif

点击“阅读原文”查看

“案例研究”栏目更多内容

关注解锁更多精彩

2023028期

编辑 | 张斯阳

审校 | 张宇 周乐

排版 | 耿雪

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值