马山 | 步行和非机动车交通设施环境决策支持平台研究:以天津市为例

文章介绍了一个融合共享单车运行、互联网地图和居民出行调查等多源数据的决策支持平台,用于评估和改善城市步行和非机动车交通设施环境。平台能动态感知骑行特征,诊断交通设施问题,挖掘公众意见,并辅助制定改善计划。以天津市为例,揭示了步行和非机动车交通设施在便捷性、安全性和舒适性方面的不足,提出改造措施如路网修补和绿化,对提升交通流量和社区服务有积极影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 写在前面 

为精准评估城市绿色交通出行环境问题并提供改善决策参考,融合共享单车运行、互联网地图、居民出行调查等多源异构数据,构建步行和非机动车交通设施环境决策支持平台。平台实现了动态感知骑行时空特征、精准诊断交通设施环境问题、深度挖掘公众意见、辅助制定近期项目建设计划、量化评估社区生活圈配套服务短板、系统检验相关项目改造成效等分析功能。基于平台分析结果可知:天津市中心城区快速路环线以外地区步行和非机动车交通设施环境在便捷、安全和舒适方面亟待提升,19处典型社区存在配套服务短板,约200处重要路段亟待改造;相关改造措施如路路网修补、增设隔离设施、种植树木等对步行和骑行流量提升、商业活力带动具有明显促进作用。借助平台功能辅助形成了针对天津市步行和骑行环境改善的一系列相关成果。

d0cfdb61fec88a39a3bd542256157606.jpeg

马山

天津市城市规划设计研究总院有限公司 高级工程师

研究背景

随着中国城镇化进程加快,城市空间规模不断扩张,居民出行距离大幅增加,机动化出行比例迅速增长,随之而来的是街道空间设计以机动车为主导,步行和非机动车通行空间逐渐受到蚕食,通行路权难以得到保障,出行环境不断恶化。

在互联网和移动技术快速发展背景下,共享单车的兴起在为市民出行带来便利的同时也产生了空间不足、秩序混乱、局部供需不平衡等一系列问题,给城市交通、市容环境带来了诸多负面影响。对于政府及管理部门来说,如何快速高效地掌握城市骑行特征以优化骑行网络,如何搭建政府监管与服务信息平台以及公众参与信息平台,提高步行和非机动车交通系统规划、建设、管理决策的科学化水平,是亟须重点关注和思考的内容。

2016年以来,天津市住房和城乡建设委员会世行贷款管理事务中心开展了“天津市中心城区绿色交通发展战略研究(一期)”技术援助项目,针对近期行动建议明确提出设立基于共享单车大数据的政府监管与服务信息平台以及面向绿色交通改善的公众参与信息平台,加速推进天津市步行和非机动车交通系统规划、建设、管理决策的信息化、智慧化、科学化水平。

文献综述

国内外针对步行和非机动车交通的研究主要集中在交通特征和空间环境品质两方面。交通特征方面,从步行和非机动车需求和供给出发[1],研究街道的最优服务水平和设施影响[2],通过层次分析法[3]、模糊分析法[4]等方法构建评价指标体系,开展步行和非机动车交通的服务水平评价[4-5]和相关指数评估[6]、需求预测模型构建[7]以及空间要素宽度优化[5]等研究。空间环境品质方面,重点关注环境因素对街道选择的影响,其中街道宽度[8]、绿化环境[9]、交通噪声、空气质量、遮蔽设施、交叉口数量[10]、街道界面[11]等因素对街道选择影响较大,通过量化相关指标要素,评估步行和非机动车交通空间环境品质[12]

已有研究更多关注理论和技术方法,将相应技术的算法成果进行平台化集成展示应用的研究相对有限。其中美国研究者于2007年提出“步行指数”(WalkScore)的概念,引入步行距离衰减、交叉口密度、街区长度等因素,量化评估街区道路步行可达性和便捷性,并通过算法集成搭建面向公众的可视化查询系统,在房屋宜居性筛选、街区环境评估等方面发挥重要作用[13]。近几年,北京、上海、深圳、重庆、武汉等城市的科研机构依托大数据、云计算、网络服务等技术相继搭建了交通领域的数字化平台,更加高效快速地辅助项目编制。例如:武汉智慧交通大脑通过多源数据的融合、挖掘与利用,系统分析和评估城市交通运行状况,为政府决策、规划编制、基础研究、行业管理提供全方位的支持与服务[14];步行和非机动车交通作为功能分析子模块,能够实现设施查询统计、流量需求分析等基础功能。

国内外关于步行和非机动车交通的既有分析平台和工具更多以设施环境和交通流状态的基础性信息查询功能为主。作为城市运转最基本、最重要的活动形式,步行和非机动车交通在街道环境品质营造、社区15分钟生活圈设施配套、地铁接驳便利性等方面未能充分发挥其分析和评估价值。基于这一背景,本文以共享单车运行数据为核心,融合多源异构数据,构建步行和非机动车交通设施环境决策支持平台,支持城市共享单车骑行时空特征分析、街道步行和非机动车交通环境品质评估、公众意见与建议征集挖掘,为政府部门提升步行和非机动车交通环境、改善市民出行品质提供数据支撑和决策参考。

平台技术框架和基础数据

1

技术框架

本平台是针对步行和非机动车交通分析场景的专业化评估分析平台,其逻辑框架包括数据层、服务层和用户层(见图1)。基于以共享单车运行数据为核心的城市数据构建平台数据底座,通过集成相关算法实现与百姓息息相关的生活场景的分析评估功能,具体包括步行和非机动车交通设施环境评估、骑行时空特征分析、社区15分钟生活圈(以下简称“社区生活圈”)设施配套评估、待改造路段识别、公众意见展示分析、改造项目效果评估等,充分发挥在步行和非机动车交通领域的决策支持作用。

9611e367522289e73df7016407738b8f.jpeg

图1 平台框架

2

基础数据

平台数据底座主要基于共享单车运行数据,同时结合不同分析场景引入其他相关数据,包括互联网地图数据、居民出行调查数据、出租汽车GPS数据、公众意见数据等(见表1),采用多源异构融合分析技术构建平台的基础数据库。

表1 平台数据底座构成

226a5d10e6f8872ad32282ac57826a60.jpeg

1)共享单车运行数据。

共享单车运行数据分为两类:①开关锁订单数据,包括日期、用户编码、单车编码、开关锁时间及经纬度坐标、骑行距离、骑行时间等信息;②骑行轨迹数据,包括日期、用户编码、单车编码、每隔20~40 s返回的单车经纬度坐标及时间信息。

2)互联网地图数据。

利用互联网地图获取开源数据信息进行指标计算,数据构成如表2所示。

表2 互联网地图数据构成

897197aa92c496529aa76ac1fe520024.jpeg

3)居民出行调查数据。

天津市2017年开展了面向市域范围的居民出行调查;2018—2020年每年定期持续开展小样本调查进行数据维护和更新,共收集数据约46万条,调查内容主要包括家庭信息、成员信息以及一日出行活动信息。

4)出租汽车GPS数据。

基于约900万条出租汽车GPS数据中包含的行驶方向、行驶轨迹、行驶速度等信息,经过处理,获得以5 min为周期的各路段平均行程车速,进而确定路段的交通运行状态。

5)公众意见数据。

自主研发的“路见PinStreet”小程序利用新媒体和大数据技术进行意见征集和数据分析。这种基于地图的民意收集方式反映了公众意愿与空间位置的对应关系。本次调查聚焦步行和非机动车交通环境,围绕出行体验、车辆停放秩序、公共空间与设施三方面设置12类主题选项,共收到有效公众留言提案6 487条,参与人数5 157人,提案字数总计约2.8万字(见图2)。

df999a8496a8addc8a3e48eaa0483a04.jpeg

图2 公众意见采集分析

决策支持应用算法

基于平台数据底座和实际需求,平台集成5大决策支持应用算法,实现相关评估分析功能,满足现实场景的决策支持。

1

设施环境评估算法

参考《城市步行和自行车交通系统规划设计导则》[15]中提出的安全性、连续性和便利性三个主要原则,以及丹麦扬·盖尔(Jan Gehl)教授关于安全、舒适和愉悦的公共空间质量标准[16],本文从安全、舒适、便捷三个维度提出街道环境友好性评价框架(见表3)。采用熵值法确定指标权重,进而计算步行和骑行设施环境评分,分值越大说明步行和骑行设施环境越好,越低则说明设施环境越差,需引起关注进行针对性改善,具体计算方法见文献[17]

表3 街道环境友好性评价框架

af61bc097f7c0ca417f06992bf5dca3d.jpeg

注:标记为“+”的指标表示与街道环境友好性评价得分呈正相关关系,而标记为“-”的指标表示与街道环境友好性评价得分呈负相关关系。

资料来源:文献[17]。

2

社区生活圈配套设施评估算法

借助共享单车运行数据、POI数据以及居民出行调查数据等,分析各社区骑行特征,进而通过与POI数据的融合分析评估骑行视角下社区生活圈便利度。具体算法步骤如下:

1)确定社区生活圈范围。

选取各居住小区出入口周边30 m范围内的共享单车开关锁订单数据,通过ArcGIS软件以单次骑行时间指标(15 min)进行空间插值和等时线提取,生成各居住小区生活圈,合并后得到社区生活圈,以此作为分析评估范围。

2)公共服务设施归类。

基于POI数据,提取居民最为关切的涉及教育、医疗、养老、文体、交通、商业6大类15小类公共服务设施(见表4),作为社区生活圈内的评估设施。

表4 公共服务设施POI类型划分

fc75b89ee710c2b10464072b504308dc.jpeg

资料来源:根据高德地图POI分类合并制作。

3)配套设施评估。

基于POI数据对社区生活圈范围统计3类指标:①各类型设施有无(Ki1),取值为0或1;②各类型设施数量(Ki2),设施数量越多,可选择度越高;③各类型设施可达距离(Ki3),即社区与设施之间的最短实际距离,通过调用百度地图API步行路径规划获得,距离越短,可达便利程度越高。

采用熵值法对6类公共服务设施的3类指标进行标准化及熵值变换,根据数据携带的信息量大小计算权重,指标加权计算后形成社区生活圈便利度指数。对各类公共服务设施进行评估,定位社区生活圈配套服务短板,精确弥补存在的问题。计算公式如下:

311448cfd85d17ec4a1b59235f020951.jpeg

式中:Kij为社区生活圈各类公共服务设施的有无、数量和可达距离的统计指标,i=教育、医疗、养老、文体、交通、商业,j=设施有无、设施数量、可达距离;Eij为设施指标的熵值;Wij为设施指标的权重;Cij为社区生活圈便利度指数。

4)相关性检验。

选取天津市537个居住小区,计算社区生活圈便利度指数并与社区骑行次数进行相关性验证。结果如图3所示,社区生活圈便利度指数与骑行次数呈现较强的正相关关系,社区生活圈配套设施越完善,骑行相对越活跃,符合现实特征规律。

bf5033760a88e0f03777b63df08dd64e.jpeg

图3 社区生活圈便利度指数与骑行次数相关性分析

资料来源:基于共享单车数据和POI数据绘制。

3

待改造路段识别算法

基于共享单车运行数据、空间句法路段可达性分析数据、骑行设施环境评估数据,通过设定相应的判别规则,识别瓶颈路段,为步行和非机动车交通系统建设、出行环境改善提供数据支持。

1)空间句法路段可达性分析方法。

引入空间句法量化分析道路可达性,以数学拓扑关系描述道路之间的连接关系,并采用基于角度距离的“穿行度”作为路段可达性的度量值。穿行度计算的是每个路段x在特定搜索半径内被其他任意两个路段yz之间最短拓扑路径穿过的数量,反映路网潜在可达性,可作为后续识别待改造路段的分析基础。

aa7d7c80e8e7885bca58f50a2e41a1d9.jpeg

式中:OD(y,z,x)为搜索半径R内穿过路段xyz之间最短拓扑路径数量;TPBt(x)为路段x的穿行度;N为搜索半径R内所有路段的集合;P(x)为搜索半径R与路段x长度的比值;links(y)为搜索半径R内经过路段y的线段数。

2)符合天津城市特征的骑行搜索半径。

遍历不同骑行搜索半径下路段可达性(穿行度),并与天津市中心城区POI进行空间耦合性分析(见图4)。空间相关系数(皮尔逊相关系数)越高,说明选取的搜索半径越符合天津城市用地布局特点,更趋近于现实城市空间布局特征,在此基础上建立的空间句法分析指标更为合理。最终选取2 km范围作为穿行度搜索半径,开展骑行路段可达性分析。

02652451e68c89e4e1fe20e04174efd2.jpeg

图4 穿行度(不同搜索半径)与天津市中心城区POI空间耦合性分析

3)路段流量需求空间拟合。

基于共享单车骑行路段流量和路段可达性进行空间耦合分析,开展路段流量与路段可达性之间的相关性分析。重点关注在路网拓扑结构中可达性较高而实际骑行流量较低的路段,该类路段被视为具有较高的改造潜力。

4)待改造路段识别。

通过设定判别规则依次层层筛选,识别待改造路段:①选取穿行度指标排名前50%且空间相关系数低于0.8的路段;②筛选现状骑行条件较差的道路,判别规则为骑行设施环境评分小于60;③结合公众意见数据进一步筛选,得到公众较为关注的待改造路段,形成改造道路储备项目库。

4

改造工程造价估算算法

将道路改造工程细分为路面铺装、隔离设施设置、空间占用清除以及绿化遮阴完善4种类型,制定不同改造措施的成本造价清单(见表5),并根据各路段骑行设施环境评估、各路段长度和改造面积估算不同改造方案的工程造价。

表5 不同改造措施的成本造价清单(单位:元·m-2)

9d68783442f84cb48f0bd59a0fd960b9.jpeg

5

公众意见信息挖掘算法

基于“路见PinStreet”小程序平台进行公众意见数据采集,通过地理信息系统和自然语言处理(Natural Language Processing, NLP)技术进行语义观点挖掘和诉求空间落位,并结合人口、区域等维度的信息开展诉求差异分析,最终形成包含定量信息感知与诉求语义挖掘的可视化结果(见图5)。

49e9fa739a938d0321c31f5d93a4565c.jpeg

图5 公众意见信息挖掘分析

资料来源:“路见”微信小程序。

应用案例

1

现状步行和非机动车出行特征感知

1)步行设施环境评估。

通过步行和非机动车交通设施环境决策支持平台分析发现:1)便捷维度,中心城区步行便捷性得分整体较高,而外围(中心城区快速路环线以外地区)新建社区步行便捷性得分整体尚可。2)安全维度,绝大多数区域整体步行安全性得分较高,东丽区和北辰区因步行和非机动车道路网不成系统,步行安全性得分较低。3)舒适维度,和平区步行舒适性得分最高,而外围新建社区街道界面较宽、步行体验较差,舒适性有待提升。

基于步行设施环境各项指标评价结果可知,和平区及成熟的社区由于兼具较高的路网密度、生活设施可达性、过街设施密度、绿荫率等,步行设施环境综合评分整体较高,步行环境较为理想;而外围新建社区虽聚集大量居住人口,但由于街道界面尺度较宽、停车环境混乱等原因,步行设施环境综合评分较低(见图6)。

2771f052323ccf5c6a6136043767179d.jpeg

图6 步行设施环境评估分析

2)骑行时空特征分析。

通过平台计算得到天津市中心城区骑行总量为144万人次·d-1,主要集中在和平区、南开区等区域,尤其在大型商圈、城市轨道交通车站等附近分布较为密集。共享单车骑行具有显著的早晚高峰特征且通道趋势明显,主要集中于城市主、次干路。骑行接驳城市轨道交通进站客流占比较高车站主要分布在人口集中的大型社区周边,骑行接驳城市轨道交通出站客流占比较高车站主要分布在城市核心区商务办公、商业繁华的地区。

通过平台计算得到的相关步行和非机动车指标在《2020年天津市城市交通发展年度报告》相关专题中得到了全面体现,在住房和城乡建设部城市体检以及国土空间规划城市体检项目中用于辅助计算相关体检指标(城市道路网密度、自行车专用道密度、城市街道车辆停放有序性等),在《天津市机动车停车设施专项规划(2021—2035年)》中用于辅助计算中心城区路内违法停车、步行和非机动车通行空间被侵占等核心指标。

2

社区生活圈配套设施评估

以天津市中心城区19处典型社区为例分析骑行特征,生成社区生活圈,对教育、医疗、养老、文体、交通、商业等6类公共服务设施进行评估,整体达标情况最好的是商业设施、文体设施以及医疗设施,而养老设施、交通设施以及教育设施存在较大短板。其中小海地、本溪路、中山路等建筑年代相对久远的成熟社区,其社区生活圈便利度指数较高,而外围新建社区如梅江、太阳城、王兰庄等配套设施存在短板,便利度指数较低(见图7)。

5ab5520e8f535e6ddaff19ca0e4b98b5.jpeg

图7 社区生活圈配套设施评估

通过平台得到的社区配套设施缺失问题在《城市十五分钟生活圈居住社区交通核心要素布局规划研究》等项目方案设计中均有所体现和落实;在《天津城市交通改善项目绿色交通改善工程》中支撑社区周边近50条道路完成更新改造。

3

近期建设项目库制定

基于穿行度指标和骑行流量叠加分析,同时结合骑行设施环境评估结果和公众意见数据,选取现状骑行条件较差且公众重点关注的路段,梳理得到约200处重点待改造路段(见图8),形成近期建设项目库。

6d0846311ddca463a0ebd2df29a7becc.jpeg

图8 近期建设项目库制定

将道路改造工程细分为路面铺装、隔离设施设置、空间占用清除以及绿化遮阴完善4方面,根据预设的成本造价清单,估算不同改造方案的工程造价,同时对比分析同一路段不同改造方案的造价费用。

通过平台生成的近期建设项目库在《天津市城市道路桥梁专项规划(2021—2035年)》中转化为近70条实际项目,占比约为35%;在《天津城市交通改善项目地铁接驳工程方案策划》中指导完成近百条道路改造,占比近60%。

4

改造项目实际效果评估

1)设施环境评估。

平台可量化展示道路改造效果。基于改造前后街道环境友好性指标量化分析,和平区绿色交通改善项目一、二期和南开区一期改造后步行和骑行设施环境均呈现较为明显的提升,其中步行设施环境提升最为显著的道路为水阁大街,骑行设施环境提升最为显著的道路为与步行街相交道路(见图9)。

45d417556acceb1f33d5a0f2ba21c195.jpeg

图9 典型路段改造前后步行设施环境评估对比分析

2)流量变化评估。

平台对步行和骑行流量变化的评估发现,各改造道路使用人数均有不同程度提升,其中水阁大街、河北路、赤峰道等提升较为显著。针对典型公共空间改造前后停留人数进行评估,发现停留人数增长明显,夜间活力提升显著,沿线停留购物及锻炼人数均有较大提升。

3)公众感受后评估。

项目改造后开展公众感受后评估工作。共收集公众提案数据939条,女性参与者占受访者总数的51%。公众关注点在项目改造前后发生了明显变化,改造前公众主要关注步行和非机动车交通空间局促、路面破损、指引标志缺失等问题;项目改造后设施环境整体提升,公众反映的问题主要集中在相关设施配套的管理运行方面,例如非机动车停放秩序、步行和非机动车交通设施运行以及机动车占道治理方面(见图10)。

0ee60a73d9a9128a13d6314434573855.jpeg

430b0aef8ac18924ade10cd248780352.jpeg

1246e84c865956ba149456feb79b1a1c.jpeg

8792f823e69f71f614cfaf799ff64da7.jpeg

图10 公众感受空间分析

借助平台功能指导完成了《天津城市交通改善项目绿色交通改善工程》中典型项目的分析评估,并支撑完成了《世界银行贷款示范工程试点项目评估报告》编制工作。

写在最后

本文以共享单车运行数据为核心,融合互联网地图、居民出行调查等数据构建步行和非机动车交通设施环境决策支持平台的数据底座,针对关键业务场景开展平台功能模块开发,并在天津市具体项目实践中得到应用验证。未来考虑为平台引入更为全面系统的步行流量数据,进一步拓展分析场景功能。通过持续的数据更新和维护,平台功能模块可支撑城市级步行和非机动车交通系统规划设计、滚动编制年度建设项目库、特定道路改造方案设计以及工程造价估算等工作,同时在社区更新、城市轨道交通接驳、停车治理、公众参与等相关领域提供数据支撑和决策辅助,助力建设以人为本、绿色低碳、智慧高效的步行和非机动车交通友好城市,让市民出行更加安全便捷、城市更加绿色宜居。

参考文献(上滑查看全部):

[1] FRUIN J J. Pedestrian planning and design[M]. New York: Metropolitan association of urban designers and environmental planner, 1971.

[2] HARRE N, WRAPSON W. The evaluation of a central-city pedestrian safety campaign[J]. Transportation research, 2004, 7(3): 167-179.

[3] BASILE O, PERSIA L, USAMI D S. A methodology to assess pedestrian crossing safety[J]. European transport research review, 2010, 2(3): 129-137.

[4] 梁科. 人行道服务水平的模糊评价模式研究[D]. 武汉:华中科技大学,2006.

LIANG K. Study on fussy evaluation mode of levels of service for sidewalks[D]. Wuhan: Huazhong University of Science and Technology, 2006.

[5] 吴洁. 城市慢行交通系统规划研究:以长沙市中心城区为例[D]. 长沙:中南大学,2014.

WU J. Research on development and planning of slow-traffic system case study: Changsha Urban Zone[D]. Changsha: Central South University, 2014.

[6] 彭雷. 武汉城市住区步行友好性研究[D]. 武汉:华中科技大学,2015.

PENG L. Study on residential districts walkability in Wuhan[D]. Wuhan: Huazhong University of Science and Technology, 2015.

[7] 边扬. 城市步行交通系统规划方法研究[D]. 南京:东南大学,2007.

[8] RODRIGUEZ D A, BRISSON E M, ESTUPIÑÁNC N. The relationship between segment-level built environment attributes and pedestrian activity around Bogota's BRT stations[J]. Transportation research part D: transport & environment, 2009, 14(7): 470-478.

[9] AGRAWAL A W, SCHLOSSBERG M, IRVIN K. How far, by which route and why? a spatial analysis of pedestrian preference[J]. Journal of urban design, 2008, 13(1): 81-98.

[10] SENEVIRATNE P N, MORRALL J F. Analysis of factors affecting the choice of route of pedestrians[J]. Transportation planning and technology, 1985, 10(2): 147-159.

[11] 陈泳,赵杏花. 基于步行者视角的街道底层界面研究:以上海市淮海路为例[J]. 城市规划,2014,38(6):24-31.

CHEN Y, ZHAO X H. Research on ground-floor interfaces along streets from the perspective of pedestrian: a case study of Huaihai Road in Shanghai[J]. City planning review, 2014, 38(6): 24-31.

[12] 金俊,张静宇,范旭艳. 城市开放街区步行环境质量评价初探:以南京河西CBD和日本品川国际城为例[J]. 上海城市规划,2017(1):50-55.

JIN J, ZHANG J Y, FAN X Y. Quality evaluation of pedestrian environment in urban open blocks: a case study of Nanjing Hexi CBD and Shinagawa Inter-city[J]. Shanghai urban planning review, 2017(1): 50-55.

[13] 周垠,龙瀛. 街道步行指数的大规模评价:方法改进及其成都应用[J]. 上海城市规划,2017(1):88-93.

ZHOU Y, LONG Y. Large-scale evaluation for street walkability: methodological improvements and the empirical application in Chengdu[J]. Shanghai urban planning review, 2017(1): 88-93.

[14] 彭武雄,官廉,杨伟. 武汉市交通大数据中心建设构想[C]//中国城市规划学会城市交通规划学术委员会. 协同发展与交通实践:2015年中国城市交通规划年会暨第28次学术研讨会论文集. 北京:中国建筑工业出版社,2015:1-6.

[15] 中华人民共和国住房和城乡建设部. 城市步行和自行车交通系统规划设计导则》[R/OL]. 北京:中华人民共和国住房和城乡建设部,(2013-12-30)[2022-09-10]. https://www.mohurd.gov.cn/gongkai/fdzdgknr/tzgg/201401/20140114_216859.html.

[16] 扬·盖尔. 交往与空间[M]. 何人可,译. 北京:中国建筑工业出版社,2002.

GEHL J. Life between buildings[M]. HE R K, translated. Beijing: China Architecture & Building Press, 2002.

[17] 曹哲静,辜培钦,韩治远,等. 面向街道的步行与骑行环境评估:以天津市为例[J]. 城市交通,2018,16(6):43-53.

CAO Z J, GU P Q, HAN Z Y, et al. Evaluation of street walkability and bikeability: a case study of Tianjin[J]. Urban transport of China, 2018, 16(6): 43-53.

《城市交通》2023年第1期刊载文章

作者:马山,姜洋,郭本峰,姚小艺

c88a904886a53e6fb74c84f6c5017dbc.gif

点击“阅读原文”查看

“案例研究”栏目更多内容

关注解锁更多精彩

2023052期

编辑 | 耿雪

审校 | 张宇

排版 | 耿雪

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值