论文推荐
Paper recommendation
题目:Towards Automated Urban Planning: When Generative and ChatGPT-like AI Meets Urban Planning(迈向自动化城市规划:当AI大模型遇到城市规划)
作者:
DONGJIE WANG,中佛罗里达大学,USA
CHANG-TIEN LU,弗吉尼亚理工大学,USA
YANJIE FU,中佛罗里达大学,USA
发表时间:2023.4
1 摘要
城市规划和AI(AI)这两个领域最初各自独立发展。然而,现在这两个领域之间已经开始相互影响,并且越来越多的人对如何从对方领域的进展中获益表现出极大的兴趣。在本文中,我们从可持续性、生活、经济、灾害和环境的角度来凸显城市规划的重要性。首先,我们回顾了城市规划的基本概念,并将这些概念与机器学习领域相关的重要且尚未解决的问题相关联,包括对抗性学习、生成式神经网络、深度编码器-解码器网络、对话型AI以及地理空间和时间机器学习,从而评估AI如何能够对现代城市规划做出贡献。其次,我们将讨论自动化土地利用配置这个核心问题,即从周围的地理空间、人类流动性、社交媒体、环境和经济活动来生成目标区域的土地利用和建筑配置。最后,我们提出了AI对城市规划的影响,并圈画出了二者交叉的关键研究领域。
2当城市规划遇上人工智能
城市规划是指设计和管理城市、城镇和其他城市地区的物理和社会发展过程。它涉及创建和实施计划与政策,以满足社区的需求的方式来指导土地、基础设施和资源的使用。近年来,AI的进步为城市规划者带来了新的机遇,如图1所示。通过利用AI算法和数据分析技术,规划者可以更深入地了解构成现代城市的复杂系统(例如土地使用和交通)。这可以帮助他们就城市规划中的问题做出更明智的决策。此外,AI可以帮助解决传统城市规划方法的一些局限性,同时,AI可以帮助识别使用传统方法可能难以或不可能检测到的模式和趋势。
在本文中,我们介绍了深度生成式的AI驱动的城市规划框架,该框架生成了考虑了规划约束和专家意见的最佳土地利用配置。这种方法旨在增强我们对生成式规划过程的理解,并解决城市规划方法中的现有的局限性,如图1所示。这将使城市规划领域更接近一种涉及图像生成思维的自动化和生成式规划形式。尽管生成式AI在文本和图像生成方面取得了成功,但城市是一个涉及地理、社会、经济和人类维度的复杂生态系统。将城市规划和AI结合起来在神经架构、训练算法、复杂且不完美的数据和计算方面都是巨大的挑战。
图1. 基于AI的城市规划师通过考虑现实规划约束和人类城市专家的输入来生成最优的土地利用配置
3深度生成式城市规划
基于深度生成式学习的自动化城市规划
通过将城市规划视为图像生成,如图2所示,我们可以将城市规划表述为深度生成式学习任务。为了构建这样一个深度生成式的城市规划框架,必须解决三个关键问题:
(1)量化:如何量化土地利用配置规划?
(2)生成:如何开发一个机器学习框架,能够学习现有城市社区在土地利用配置政策方面的优缺点?
(3)评估:如何评估生成的土地利用配置的结果?
图2 城市规划和深度生成AI之间的类比
关键术语
(1)目标区域(Target Area)
在城市规划中,目标区域指的是规划工作的重点所在的特定地理位置。为了使目标区域具有可量化性,我们将目标区域定义为一个具有空白和正方形形状的地理区域,通常以边长一公里的正方形表示。
(2)地理空间背景(Geospatial Contexts)
地理空间背景代表了目标区域的周边环境,每个背景保持与目标区域相似的形状。图3(a)显示了这些背景从不同方向包围着目标区域。为了利用地理空间背景中包含的信息,我们将它们表示为一个空间属性图,如图3(b)所示。
图3 目标区域和地理空间背景的说明
(3)城市功能区(Urban Functional Zone)
城市功能区提供了网格级土地利用配置的规划基础,为了提取这些区域,首先将地理区域划分为N×N的网格,。这些区域的结果数据结构如图4(a)所示,在该图中,多个网格与一个单一的城市功能标签相关联,形成了一个矩阵,表示为U∈RN×N 。
(4)土地利用配置(Land-use Configuration)
首先将地理区域划分为 N×N 的网格,然后对每个POI(兴趣点)类别在每个网格内的POI数量进行计数。然后,将每个类别的计数堆叠在一起生成最终的配置。图4(b)显示了这个配置的结果数据结构,它是一个包含经度、纬度和POI类别维度的张量。这个张量表示为 X ∈ R N×N×C,其中C是POI类别的数量。
图4 城市功能区与土地利用布局
(5)人类指令(Human Instruction)
为了使我们的模型能够理解这种指令,我们设计了一种方法来量化其在不同层次上的语义含义。例如,绿化率的范围表示了地理区域内绿色植物的覆盖程度,其范围在[0~1]之间。我们将这个区间划分为多个绿化率水平,每个水平的标签反映了相应的人类指令。
通用框架
深度生成式城市规划旨在生成目标区域的最佳土地利用配置。自动化城市规划包括两个基本步骤:表示和生成。第一步是学习目标区域的地理空间、移动性、经济、社会环境和人类指令等生成条件的表示。第二步是在给定生成条件的表示的情况下,为目标区域生成最佳的土地利用配置解决方案。
1
表示
感知地理空间形态、人类流动性、社交互动和人类规划者指令。为了生成有效的城市土地利用配置,我们需要教导AI来感知和理解地理空间形态、人类流动性、社交互动以及人类规划者的指令。
受深度表示学习成功的启发,可以利用AI来学习所有地理空间形态、人类流动性、社交互动和人类规划者指令的表示。所有这些信息表示可以组合成一个条件生成嵌入,可用于生成根据该地区特定需求定制的城市规划。
具体来说,我们将这些复杂且不完美的城市多维信息转化为一个新的表示,以捕捉目标区域情境状态的最显著特征或特性。表示可以通过传统方法实现,如特征提取、降维,以及先进方法,基于深度学习的高级方法可以学习结构知识感知的表示,将城市环境的地理、流动性、社会和人类方面捕捉并融合到一个抽象的向量中。
2
生成
学习生成土地利用配置(Land-use Configurations)。所有相关信息的表示(例如,地理、流动性、社交、人类文本指令数据)将用作深度土地利用配置生成式模型的生成条件。一个有意义的土地利用配置生成模型包括:
a. 神经生成模型架构;
b. 生成模型的目标函数;
c. 优化以及训练策略。
4典型城市规划生成模型
基于生成对抗学习的城市规划
为了实现土地的高质量配置,提出了一种新的模型LUCGAN,通过使用经纬度通道张量实现土地利用配置的量化,同时,将社会和经济因素纳入土地利用配置的发展中,还将城市规划问题看作是一个对抗学习过程,网络的生成器将周围的空间信息映射到配置张量中。最后,通过对真实世界的数据进行广泛的实验和可视化来评估我们提出的方法的有效性。但是,该过程缺乏对生成过程的控制,缺乏以人为中心和人类专家语义指导的考虑,使得网络的输出结果不理想。
图5 LUCGAN框架
基于变分自编码器的城市规划
之前研究普遍未考虑人为指导、分层空间结构的需求以及数据稀疏性的问题,提出CLUVAE网络,结合人类专业知识和周围环境,通过正则化项目捕获城市规划中的空间层次。该网络可以接受人类文本信息和周围空间环境作为输入,并输出土地利用配置,编码器在潜在嵌入空间上返回特征,同时重建城市功能标签和POI分布张量,获取不同区域之间的空间层次,促进土地的合理规划配置。但是模型不可全面获取空间层次和不同区域之间的关联影响。
图6 CLUVAE框架
基于transformer空间层次感知的城市规划
基于现有研究忽略了各个分区规划工作之间的依赖关系和相互影响,未能充分概括粗粒度城市功能区与细粒度土地利用配置之间的层次关系,提出IHPlanner模型,先粗略城市规划草图,然后进行空间细化得到细粒度结果。引入了一个Functionalizer模块,整合人类指令和周围环境因素,此外,采用多关注机制捕捉不同分区之间的影响和影响,促进产生更合理的土地利用配置。但是,网络的评价指标过于简单,且未在现实场景中广泛测试。
图7 IHPlanner框架
5 未来城市规划
随着数据可用性的增加,城市规划者可以使用数据分析来更好地了解人们如何使用城市空间,识别模式和趋势,并对未来的城市规划做出明智的决策。此外,混合用途开发包括创造结合住宅、商业和娱乐用途的空间。这有助于创造更宜居、更适合步行的社区,减少对汽车旅行的需求。
基于此,未来的城市规划可能会受到以数据为中心的人工智能技术和以模型为中心的人工智能技术的快速发展的影响。以数据为中心的人工智能技术包括时空表征和多模态学习。以模型为中心的人工智能技术包括深度生成学习、预训练、会话式人工智能和人在环反馈强化学习。因此,我们设想未来的城市规划将是自动化的、生成的、地理空间的、社会的、经济的、环境知识引导的、人机协作的和公平意识的,如图8所示。
图8. 一个面向未来的城市规划框架
自动化:指利用AI来简化或增强规划过程。这可能包括使用编程、算法或其他工具来帮助分析数据、生成设计方案或做出关于城市发展的决策。
生成式:指的是在深度学习中使用生成模型来模拟和创造新的城市设计可能性。这些模型是在大量城市特征和模式的数据集上进行训练的,可以用于生成新的设计或模拟不同设计选择的结果。
人机协作:指一种涉及在城市规划中使用人类反馈进行循环学习的方法。这是一种类似于 ChatGPT 的对话式协作,在城市规划和人工智能之间进行。这种方法寻求将人类设计师的创造力、专业知识、经验和直觉结合起来,用于智能机器。这可能导致更高效、有效和创新的城市设计,更好地满足不同社区的实际需求。
以人为中心具有公平性意识的规划:指的是考虑各个子群体(如老年人团体)在负担得起的住房、交通、公共服务和绿色空间以及其他资源(如医疗资源)方面的公平准入。
人机协作的规划流程
1. 训练深度生成规划器
(1)预训练:使用社区及相关城市地理、人类流动性以及基于位置的社会媒体数据,训练一个深度生成规划模型,可以根据地点及其相关的地理、流动性、环境、经济和社会媒体信息预测土地使用配置计划,并以地理和功能上有意义的方式适应地方。在预训练阶段之后,模型可以根据地方及其相关信息生成土地使用配置,但它无法回答问题。
(2)微调:微调阶段是一个三步过程,将预训练的土地使用生成模型转变为具有人类反馈循环能力的对话模型。
- step1:采集训练数据并微调深度生成规划模型:。
- step2:收集更多数据,训练一个奖励模型,对这些答案从最相关到最不相关进行排序。
- step3:使用强化学习(PPO 等)对模型进行微调,以使深度生成规划模型的生成的土地使用配置更加准确。
2. 回答规划改进请求
– 步骤 1:用户通过口头语言与基于生成学习的城市规划系统进行交互,表达规划要求,例如:“你能帮助我生成一个含有大量绿色空间的城市设计吗?”
– 步骤 2:将提出的问题首先转换为文本形式,并通过自然语言理解模型对其语义内容进行解析。同时,将信息纳入对话管理模块,以记录当前的对话状态。
– 步骤 3:基于生成学习的城市规划系统吸收当前对话以及周围环境中的上下文规划约束的信息。随后生成了一个满足指定规划要求的城市规划。
– 步骤 4:将生成的城市规划呈现给人类专家,以获取他们的评价,并确定可能需要改进或优化的潜在区域。
– 步骤 5:人类专家可以提出具体的改进建议,使生成的结果通过迭代不断优化,最终实现最优解。
6 总结与展望
城市规划对于解决日益增长的城市人口挑战、促进可持续发展和提高城市生活质量至关重要。本文探讨了城市规划的复杂性以及人工智能辅助工具的潜力,以使其更加高效和公平。
四个关键趋势将推动人工智能辅助城市规划的未来:配置表示、生成学习、通过会话 AI 的人机协作规划和公平性意识规划。通过拥抱这些趋势,我们可以确保我们的城市规划方法更具适应性、创新性和包容性。
随着城市人口继续增长,城市规划挑战日益复杂,AI 辅助城市规划为创建可持续、有弹性和公平的城市空间提供了创新解决方案。通过采用本文中概述的趋势并促进结合计算机科学和城市规划优势的多学科方法,我们可以重新思考我们城市的未来,为更繁荣、包容和可持续的世界作出贡献。
推荐人:
- 邹小川,深圳大学硕士在读,目前从事机器视觉研究,关注驾驶行为。
- 孙妍,北京航空航天大学硕士在读,从事智能基础设施研究,关注自动驾驶。
终审/整理:张一豪
欢迎合作 Welcome
创立宗旨:交通邦旨在构建泛交通领域最大的交流分享平台,促进产学研融合,最小化信息不对称。
欢迎投稿/合作:各位学生/教授/专家/企业在学术成果、招生计划、书籍推介、内推岗位、比赛冠名等与交通邦合作!
联系方式:添加交通邦小助手微信(jiaotongbang),备注“姓名-学校-合作内容”。
TRAFFIC ZONE
往期作品集