“
写在前面
道路交通碳排放研究存在核算技术方法不成熟、排放因子本地化路径不明确等问题,影响道路交通移动源碳排放核算精度。对此,基于现有研究界定城市道路交通移动源碳排放的核算概念、核算边界及核算对象,归纳介绍因素分解法、排放系数法、全生命周期评价法三种道路交通移动源碳排放核算方法的核算原理及计算模型。针对排放因子标定研究的不足,以深圳市实践为例,阐述本地化排放因子标定校验的技术方法。通过采集深圳市本地化车辆运行工况,与欧洲HBEFA库的典型工况进行匹配识别;同时基于OPCAS车载移动平台校核排放因子的标定精度。最终确定不同车型、道路条件、排放标准情况下的4 500个排放因子,建成深圳市本地化排放因子库。
丘建栋
深圳市城市交通规划设计研究中心股份有限公司 交通信息与模型院院长 正高级工程师
研究背景
交通运输是城市碳排放的三大集中领域之一,其中机动车碳排放被认为是空气污染和全球变暖的主要原因。以深圳市为例,近10年,交通运输领域能耗年均增长0.6%,约为全市能耗年均增速(0.38%)的两倍,其中道路交通碳排放占综合交通运输方式碳排放总量的80%以上,小汽车占道路交通碳排放总量的65%[1]。挖掘道路交通移动源的减排潜力、控制道路交通领域碳排放量增长成为降低碳排放总量并推动碳达峰的重要驱动力。
城市碳排放核算是低碳城市发展的必要环节,其中道路交通移动源碳排放核算是城市碳排放核算的重要组成部分,近年来其核算方法的研究成为国内外的研究热点[2-4]。美国、欧洲等发达国家在道路交通移动源排放理论建模与实践应用中处于领先地位,已形成较为系统、完整的理论与技术体系,如欧盟国家的COPERT/HBEFA模型、ARTMITSMO模型,美国的GREET生命周期模型、ACEEE绿皮书、TVE模型等均有较好的应用和推广。中国在该领域起步较晚,国家对城市层面碳排放的核算尚未形成统一、规范的标准[5],主要做法是在应用国外模型的基础上结合本地化的交通特征实现道路交通移动源的碳排放核算。例如,王孝文 等[6]利用TVE模型计算杭州市不同级别道路不同工况下的机动车排放因子,结合ArcGIS建立了2010年机动车污染物排放清单;沈岩 等[7]基于北京市机动车保有量和道路行驶工况等数据,应用COPERT模型建立了2019年北京市机动车主要大气污染物排放清单,同时核算得到机动车CO2排放量。除此之外,北京、西安、深圳、广州等城市相继开展道路交通移动源的排放因子本地化标定研究并进行了验证。
本文基于已有文献资料与研究团队工作实践,梳理城市道路交通移动源碳排放的核算概念、核算边界、核算方法等,并总结深圳本地化排放因子标定经验。
基本理论
1
核算概念
城市道路交通移动源碳排放是指交通工具在城市道路运输过程中由于能源消耗产生的碳排放。广义上的碳排放不仅仅为CO2的排放,还包含SO2,CH4,N2O等各种温室气体。由于全球温室气体中CO2含量最大、危害影响最广,同时也是道路交通移动源产生最多的排放物,因此本文中城市道路交通移动源碳排放专指各种道路交通工具能源消耗产生的CO2排放量。
城市道路交通移动源碳排放分为直接碳排放和间接碳排放两个部分[7]。直接碳排放的范围界定为化石燃料直接燃烧产生的碳排放,例如公共汽车、出租汽车、私人小汽车、摩托车等燃油车使用汽油和柴油等化石燃料直接燃烧产生的碳排放;间接碳排放的范围界定为运输工具在使用过程中没有直接产生碳排放,但其燃料生产过程中间接产生碳排放,例如电动汽车、电动公共汽车运行过程不直接产生碳排放,但其消耗的电能所产生的排放计入电气化车辆间接排放中。在进行核算时,直接碳排放和间接碳排放都需要被纳入研究范畴。
2
核算边界
城市道路交通移动源碳排放核算研究需要界定核算边界[8],由此确保后期制定交通政策时具有时空针对性,能够针对不同的交通方式制定相应的碳排放管理政策。核算边界的确定需要考虑城市的交通特点与数据可得性,通常情况下可按以下4种方式进行界定(见图1和表1)。
图1 城市道路交通移动源碳排放核算边界示意
表1 城市道路交通移动源碳排放核算边界界定方式对比
1)按照行政区域划定。
以行政区域划定核算边界时,需要核算区域内的所有出行。这种界定方式可以很好地与城市交通政策的影响范围对应,需要将研究区域划分为若干交通小区,分别对交通小区之间和交通小区内部的交通活动进行研究。
2)按照居民户籍划定。
以居民户籍划定核算边界时,需要核算所有居民的出行。这种界定方式下的交通活动不局限在市域范围内,还包括以其他城市为目的地的长距离出行,因此必须以完整的居民出行调查数据为基础,获取难度较大。
3)按照出行起讫点划定。
以出行起讫点划定核算边界时,需要核算所有以研究区域为起讫点的出行。这种界定方式的研究范围较广,既包括起讫点都在城市内部的出行,也包括以研究区域为起点或终点的城际出行。起讫点都在城市外部的出行(过境交通)不在研究范围内。
4)按照燃油销售地划定。
以燃油销售地划定核算边界的方式比较特殊。它并不以出行为研究对象,而是利用本地的燃油销售量来计算汽车尾气排放量。这种方式需要准确的燃油销售数据且计算精度欠佳。
3
核算对象
城市道路交通移动源指运行在城市道路上的交通运输载体,根据运输性质划分为客运和货运,并依据运输车辆的负载能力及技术特点等可进一步细分。1)客运:小汽车、公共汽车、长途客车;2)货运:小型货车、中型货车、大型货车。每种交通方式具有特定的能源消耗及碳排放规律。
城市道路交通移动源核算方法
根据国内外相关研究,城市道路交通移动源碳排放核算方法可划分为3类[9]:第1类是基于因素分解法的碳排放量模型计量方法,主要是通过建模来分析相关因素与碳排放量之间的相互影响关系;第2类是用于支撑碳交易市场的碳排放核算方法,此类方法主要是根据联合国政府间气候变化专门委员会(Intergovernmental Panel on Climate Change, IPCC)等机构发布的指南标准形成的排放系数法,是在世界各国都比较认同的一种核算方法;第3类是基于全生命周期评价的碳排放量计算方法,该方法面向流程,用于量化活动、服务、过程或产品全生命周期生产/投入所产生的碳排放。
1
基于因素分解法的碳排放量模型计量方法
通过分解影响碳排放量变化的核心因素,基于因素分解法的碳排放量模型计量方法解析不同因素对碳排放量的持续性影响及贡献度,为促进阶段性的低碳政策制定、提供理论基础和调整决策打下基础。结构分解法是其中普遍使用的一种方法,所包括的模型较多,如Kaya模型、IPAT模型、STIRPAT模型等(见表2)。
表2 基于因素分解法的碳排放量模型计量方法
资料来源:文献[9]。
Kaya模型具有应用时间早、使用范围广、计算结构简单的特点,广泛应用于交通碳排放核算领域。以上海市交通碳排放研究为例,在验证小汽车交通碳排放量主要受小汽车数量、行驶里程及车辆性能影响基础上,陈飞 等[10]依据Kaya模型的基本原理及模型结构,纳入小汽车数量、行驶里程指标,替换原Kaya模型中的人口、经济指标,形成针对小汽车CO2排放量核算的Kaya交通模型,并对上海市交通碳排放总量及不同交通方式碳排放现状进行量化分析。计算公式为
式中:n为小汽车数量/辆;行驶里程/小汽车数量为车均行驶里程/(km·辆-1);E/行驶里程为单位行驶里程小汽车能耗量/(kg·km-1);CO2/E为折算系数/(kg·kg-1)。
2
基于指南标准的排放系数法
基于指南标准的排放系数法是目前应用最为广泛的碳排放核算方法,也是国内外编制温室气体排放清单的依据。其核心思想是碳排放量等于交通活动水平与各类排放因子的乘积:
式中:E为CO2排放量/kg;Fa为第a类燃料的消耗量/kg;EFa为第a类燃料的排放因子/(kg·kg-1)。Fa主要来源于国家相关统计数据、监测数据或调查资料、排放源普查等,EFa可以采用国际通用的《2006年IPCC国家温室气体清单指南》(2006 IPCC Guidelines for National Greenhouse Gas Inventories)推荐值或权威机构实际测量结果。常用的排放因子数值主要获取来源如表3所示。
表3 排放因子数值主要获取来源
根据交通活动数据的精细化程度,将基于指南标准的排放系数法细分为自上而下(Top-Down)和自下而上(Down-Top)两种方法。
1)自上而下法。
自上而下法称为终端消费侧计算法,通过交通工具所消耗燃料的总量和排放因子数据核算得到交通碳排放量。该方法的特点是基础数据易获取、可操作性较强,中国城市交通领域碳排放核算主要采用这一方法,例如武翠芳 等[11]采用该方法对2000—2013年甘肃省交通CO2排放量进行核算;张陶新 等[12]基于1995—2010年中国28省市的统计数据分析交通碳排放量的分布特征和收敛性。
2)自下而上法。
自下而上法基于L. Schipper[13]等提出的“活动—交通方式比例—密度—油耗”的思想,根据能源消耗与碳排放的转换关系,通过研究国家或区域交通部门各种交通方式的车辆里程数、保有量、单位行驶里程能耗量计算燃料消费总量,在此基础上乘以燃料的排放因子,间接获得交通部门的碳排放量。其公式表达如下:
式中:E为CO2排放量/kg;Vi,j为使用第j类燃料的第i种车辆的数量/辆;Si,j为使用第j类燃料的第i种车辆的行驶里程/km;Ci,j为使用第j类燃料的第i种车辆的里程能源消耗量/(kg·km-1·辆-1)。
通过研究交通需求及运行工况特征,自下而上法匹配排放因子库获取对应排放因子,计算车队碳排放量,并通过集计车队排放量获得城市交通活动的碳排放总量,核算原理如图2所示。这一方法计算准确度高,在数据能够获取的情况下是较为推荐的方法。张清 等[14]以上海市为例,采用自下而上法对超大城市客运交通CO2排放量进行测算;宁晓菊 等[15]运用车辆数、年行驶里程、单位行驶里程耗油量、燃油密度、所用燃料净发热值等指标自下而上地核算郑州市交通碳排放量。
图2 自下而上建立交通碳排放模型基本原理
3)方法对比。
自上而下法是基于燃料消耗的计算方法,计算流程简单便捷,但计算结果较为粗略,不仅受制于各城市能源统计口径,还很难获取不同类型能源的消耗量,也不能区分燃料消耗的细节特征,难以评估不同交通管理政策措施的减排潜力和未来交通碳排放情况。自下而上法计算精度较高,能体现城市道路交通移动源碳排放的特点和计算碳排放的空间分布,但交通活动数据和本地化的排放因子数据获取成本较大。两种碳排放核算方法对比如表4所示。
表4 两种碳排放核算方法对比
无论是自上而下法还是自下而上法,参与计算的数据精细化程度决定了碳排放量计算的准确程度,其中需要重点关注的是排放因子和交通活动强度的精细度。
3
基于全生命周期评价的碳排放量计算方法
生命周期法是用来评估整个生命周期内活动、服务、过程或产品相关的全部产出和投入对环境造成间接或直接影响的方法。一般认为,生命周期法主要用于企业以及基于物质流分析的碳核算体系[16-17]。近年来也有学者将该方法引入道路交通移动源碳排放核算中,如张秀媛 等[18]根据公共交通系统能耗核算模型结构将模型的计算模块分为3个部分,即基础设施建设能耗及排放计算、基础设施运营能耗及排放计算,以及车辆运行能耗及排放计算。
1)基础设施建设阶段的碳排放计算公式。
式中:CEC为基础设施建设阶段的碳排放量/kg;EFn为第n类建筑材料排放因子/(kg·kg-1);Un为第n类建筑材料用量/kg;EFc为电力排放因子/(kg·(kW·h)-1);Ui为第i类施工器械的耗电量/(kW·h)。
2)基础设施运营阶段的碳排放计算公式。
式中:CEO为基础设施运营阶段的碳排放量/kg;Uj为第j类设备运营的耗电量/kW·h。
3)车辆运行阶段的碳排放计算公式。
式中:CEv为车辆运行阶段的年碳排放总量/kg;CEk为第k类交通方式车辆运营阶段的年碳排放量/kg;D为城市客运交通年均出行需求总量/(人·km);Sk为第k类交通方式的出行分担率/%;Qk,i为第k类交通方式中使用第i类燃料的车辆占比/%;Fk为第k类交通方式的载客人数/人;Gk,i为第k类交通方式中使用第i类燃料的车辆单位行驶里程能耗强度/(kg·km-1);EFi为车辆使用第i类燃料的排放因子/(kg·kg-1)。
排放因子标定验证实践
排放因子精细度影响碳排放核算方法的准确度,城市道路交通移动源排放因子受多种因素影响,例如引擎油耗速率、车型、路面情况、环境温度、驾驶人行为等。另外,由于各地机动车保有量、交通拥堵状况、道路通行能力、路网车速等条件不同,排放因子也会存在差异。城市道路交通移动源排放因子的标定是一个复杂的过程,也是碳排放核算领域的热点问题。
HBEFA是欧洲主流的道路交通排放因子模型,该模型从排放类型、车辆类型、年份(排放因子的聚合口径)、污染物类型、交通状况等不同维度划分排放因子。鉴于中国乘用车发动机、排放等特性与欧洲类似,基于HBEFA模型标定本地化排放因子具有可操作、成本低、较准确的优势。然而,中国道路交通状况、驾驶行为与欧洲国家可能存在差异,需要根据本地化车辆运行工况进行标定研究。
本文以深圳市为例进行城市道路交通移动源排放因子标定验证实践。基于HBEFA模型标定本地化排放因子的技术思路为:选取不同类型的客车、货车,安装逐秒级GPS数据采集设备,收集车辆在不同道路等级条件下的运行工况,通过与HBEFA库比对确定深圳本地化排放因子(见图3);然后基于车辆尾气追踪与分析系统(On-road Plume Chasing and Analysis System, OPCAS)追踪测量排放因子(见图4),采集分析真实环境下的交通碳排放数据,对标定的排放因子进行迭代、校核,形成准确的深圳本地化排放因子。
图3 深圳本地化排放因子标定技术路线
图4 OPCAS车载移动平台
1
GPS数据采集
选取超过100辆车进行逐秒级GPS数据采集,开展超过6 000 h的GPS调查,采集各类型车辆运行工况。采集的GPS数据示意如表5所示。
表5 原始GPS数据示意
2
运行特征提取
在GPS数据处理的过程中,结合地图匹配技术和道路交通评估系统,利用交叉分类法,根据道路等级和拥堵等级将一次行驶过程细分为若干不同的工况单元(见图5),并依照时间顺序对工况单元进行编号。初步处理后得到工况单元基础数据表,包括每一个车辆编号、工况单元编号、道路等级、拥堵等级等。
图5 工况单元划分示意
在完成工况单元划分后,计算每一个工况单元的统计指标,包括行驶距离、行程时间、平均速度、停车时间比例、相对正加速度(Relative positive acceleration, RPA),得到统计指标数据表(见表6)。
表6 工况单元统计指标数据示意
接着对数据进行标准化处理,用数据的偏差除以标准差以消除量纲和数量级的影响。其计算原理是:
式中:Z为特征值;x为每个单元的某项特征指标;μ为该指标的平均值;σ为该指标的标准差。
针对平均速度、停车时间比例和相对正加速度分别计算特征值Z1,Z2和Z3,并计算三者乘积(见表7)。
表7 数据标准化处理
3
典型工况提取
基于GPS数据,针对每一种道路等级的对应服务水平,选择特征值最小的前20个工况曲线来确定高频工况。将前20个工况的相对正加速度等指标与HBEFA库中的工况指标进行对比,从HBEFA库中选择潜在的典型工况。针对各级道路对应不同服务水平下的前20个工况绘制速度时变图,将明显不符合该道路交通条件下车辆一般运行特征的工况剔除,筛选出合理的工况作为预选(见图6)。通过以上步骤得到符合深圳实际道路运行情况的典型工况,以小汽车为例的主干路典型工况曲线见图7。
图6 典型工况确定流程
图7 主干路小汽车典型工况曲线
4
排放因子提取
将深圳市各等级道路典型工况下的交通运行特征值(平均速度、停车时间比例、相对正加速度等)与HBEFA库中对应道路等级下的工况运行特征进行比对(见图8),根据两个工况交通运行特征值的差异,以差值最小为原则匹配深圳市各等级道路典型工况对应的HBEFA库工况,该工况在HBEFA模型中对应的排放因子即为深圳市典型工况的排放因子。
图8 道路典型工况交通运行特征匹配示意
5
排放追踪分析
为获取真实交通环境下的排放因子和交通碳排放数据,支撑构建本地化、精细化、高可信度的排放因子库和碳排放监测扩散模型,利用OPCAS车载移动平台快速测量单车排放因子。具体方法为:基于OPCAS车载移动平台动态采集目标车辆废气,捕捉污染物浓度的变化,并透过移动平台的精密仪器进行在线快速测量;基于CO2和各污染物浓度的变化,利用燃油碳平衡原理快速得出目标车辆排放因子。道路交通碳排放追踪分析基本过程如图9所示,深圳市本地化排放因子实测追踪路径如图10所示。
图9 OPCAS车载移动平台
图10 深圳市本地化排放因子实测追踪路径示意
6
闭环验证分析
道路交通排放因子实测追踪可实现交通碳排放的高精度监测分析,但仅能覆盖部分监测路段;借助排放扩散模型可实现对全时空范围内的交通碳排放扩散情况进行推演,但其推演分析精度存在一定的不足。将排放扩散模型与移动监测车实测数据进行融合分析,利用真实环境下的交通碳排放数据迭代、校核、验证排放扩散模型的推演分析结果,形成闭环校核验证技术体系,提升排放扩散模型全时空推演分析精度。
通过上述步骤,最终确定了不同道路条件、车型、排放标准情况下的4 500个排放因子,其中小汽车、货车、公共汽车各1 500个排放因子,由此建成深圳市本地化排放因子库。排放因子部分结果如表8所示。
表8 深圳市本地化排放因子示意
写在最后
本文在已有文献方法和实践经验基础上,系统梳理了城市道路交通移动源碳排放的核算概念、核算边界、核算对象和核算方法。以深圳市为例,系统介绍了本地化排放因子标定校验的具体流程及方法,针对不同车型、道路条件以及排放标准,标定了4 500个符合深圳市本地化交通特征的排放因子。同时,基于OPCAS车载移动平台,设计碳排放追踪监测实验,对车辆排放因子标定精度进行校核,形成深圳市本地化排放因子库,为城市道路交通移动源碳排放的精细化核算提供一定的理论指导和技术支撑。道路交通移动源碳排放核算精度提升与排放因子、工况测定的精度及碳排放核算模型适用性有关,本文着重研究排放因子本地化的系统方法,从优化排放因子准确度的视角提高道路交通移动源碳排放核算精度,后续将深入研究高精度工况测定与处理以及改进碳排放核算模型的具体方法。
参考文献(上滑查看全部):
[1] 许晔,王钧,刘爽爽,等. 深圳市主要道路交通碳排放特征与低碳交通发展情景研究[J]. 北京大学学报(自然科学版),2018,54(1):146-156.
XU Y, WANG J, LIU S S, et al. On-road transportation carbon emission characteristics of main roads and low-carbon transportation development scenarios in Shenzhen, China[J]. Acta scientiarum naturalium universitatis pekinensis, 2018, 54(1): 146-156.
[2] 王燕军,何巍楠,宋国华,等. 北京市2017年典型日机动车动态排放特征研究[J]. 环境科学研究,2021,34(1):141-148.
WANG Y J, HE W N, SONG G H, et al. Vehicular dynamic emission characteristics of typical days in Beijing in 2017[J]. Research of environmental sciences, 2021, 34(1): 141-148.
[3] 王凯,樊守彬,孙改红,等. 基于行驶里程的北京市延庆区机动车排放清单建立及特征分析[J]. 环境工程技术学报,2019,9(2):119-125.
WANG K, FAN S B, SUN G H, et al. Motor vehicles emission inventory at county level based on vehicle kilometers travel: a case study of Yanqing District of Beijing[J]. Journal of environmental engineering technology, 2019, 9(2): 119-125.
[4] HE L, ZHU J W, QIAN Y, et al. Study on pollutants emission characteristics of vehicles in Urumqi[J]. Environmental engineering, 2015, 33(5): 90-94.
[5] 徐丽笑. 城市碳排放核算研究进展[J]. 经济统计学(季刊),2018(2):15-37.
XU L X. A brief summary on city carbon emisiion accounting[J]. China economic statistics quarterly, 2018(2): 15-37.
[6] 王孝文,田伟利,张清宇. 杭州市机动车污染物排放清单的建立[J]. 中国环境科学,2012,32(8):1368-1374.
WANG X W, TIAN W L, ZHANG Q Y. Development of motor vehicles emission inventory in Hangzhou[J]. China environmental science, 2012, 32(8): 1368-1374.
[7] 沈岩,武彤冉,闫静,等. 基于COPERT模型北京市机动车大气污染物和二氧化碳排放研究[J]. 环境工程技术学报,2021,11(6):1075-1082.
SHEN Y, WU T R, YAN J, et al. Investigation on air pollutants and carbon dioxide emissions from motor vehicles in Beijing based on COPERT model[J]. Journal of environmental engineering technology, 2021, 11(6): 1075-1082.
[8] 丛建辉,刘学敏,赵雪如. 城市碳排放核算的边界界定及其测度方法[J]. 中国人口·资源与环境,2014,24(4):19-26.
CONG J H, LIU X M, ZHAO X R. Demarcation problems and the corresponding measurement methods of the urban carbon accounting[J]. China population, resources and environment, 2014, 24(4): 19-26.
[9] 刘学之,孙鑫,朱乾坤,等. 中国二氧化碳排放量相关计量方法研究综述[J]. 生态经济,2017,33(11):21-27.
LIU X Z, SUN X, ZHU Q K, et al. Review on the measurement methods of Carbon Dioxide emissions in China[J]. Ecological economy, 2017, 33(11): 21-27.
[10] 陈飞,诸大建,许琨. 城市低碳交通发展模型、现状问题及目标策略:以上海市实证分析为例[J]. 城市规划学刊,2009(6):39-46.
CHEN F, ZHU D J, XU K. Research on urban low-carbon traffic model, current situation and strategy: an empirical analysis of Shanghai[J]. Urban planning forum, 2009(6): 39-46.
[11] 武翠芳,熊金辉,吴万才,等. 基于STIRPAT模型的甘肃省交通碳排放测算及影响因素分析[J]. 冰川冻土,2015,37(3):826-834.
WU C F, XIONG J H, WU W C, et al. Calculation and effect factor analysis of transport carbon emission in Gansu Province based on STIRPAT model[J]. Journal of glaciology and geocryology, 2015, 37(3): 826-834.
[12] 张陶新,曾熬志. 中国交通碳排放空间计量分析[J]. 城市发展研究,2013,20(10):14-20.
ZHANG T X, ZENG A Z. Spatial econometrics analysis on China transport carbon emissions[J]. Urban development studies, 2013, 20(10): 14-20.
[13] SCHIPPER L, MARIE-LILLIU C, GORHAM R. Flexing the link between urban transport and greenhouse gas emissions: a path for the World Bank[R]. Paris: International Energy Agency, 2000.
[14] 张清,陶小马,杨鹏. 特大型城市客运交通碳排放与减排对策研究[J]. 中国人口·资源与环境,2012,22(1):35-42.
ZHANG Q, TAO X M, YANG P. Research on carbon emissions from metropolis urban passenger transport and countermeasures[J]. China population, resources and environment, 2012, 22(1): 35-42.
[15] 宁晓菊,张金萍,秦耀辰,等. 郑州城市居民交通碳排放的时空特征[J]. 资源科学,2014,36(5):1021-1028.
NING X J, ZHANG J P, QIN Y C, et al. Spatial and temporal characteristics of carbon emissions from urban resident travel in Zhengzhou[J]. Resources science, 2014, 36(5): 1021-1028.
[16] SHUI B, HARRISS R C. The role of CO2 embodiment in US-China trade[J]. Energy policy, 2006, 34(18): 4063-4068.
[17] MUÑOZ P, STEININGER K W. Austria's CO2 responsibility and the carbon content of its international trade[J]. Ecological economics, 2010, 69(10): 2003-2019.
[18] 张秀媛,杨新苗,闫琰. 城市交通能耗和碳排放统计测算方法研究[J]. 中国软科学,2014(6):142-150.
ZHANG X Y, YANG X M, YAN Y. Statistical estimation method for energy consumption and carbon emissions by urban transport[J]. China soft science, 2014(6): 142-150.
《城市交通》2023年第4期刊载文章
作者:丘建栋,徐祥,屈新明,暨育雄
点击“阅读原文”查看
“案例研究”栏目更多内容
关注解锁更多精彩
2023158期
编辑 | 耿雪
审校 | 张宇
排版 | 耿雪