NC《自然通讯》新文 | 基于低渗透率轨迹数据的交通信号优化系统开发与实践...

Traffic light optimization with low penetration rate vehicle trajectory data

  • 作者:Xingmin Wang, Zachary Jerome, Zihao Wang, Chenhao Zhang, Shengyin Shen, Vivek Vijaya Kumar, Fan Bai, Paul Krajewski, Danielle Deneau, Ahmad Jawad, Rachel Jones, Gary Piotrowicz & Henry X. Liu

  • 期刊:Nature Communications15, 1306 (2024).

  • https://doi.org/10.1038/s41467-024-45427-4

摘要

优化交通信号配时被认为是在不改变道路基础设施情况下,减缓城市地区拥堵和降低能源消耗的低成本高收益方法。然而,由于车辆检测器的安装和维护成本高,大多数交叉口都由固定配时方案的交通信号控制,也没有进行定期优化。为了缓解交叉口的交通拥堵,本文提出了一个大规模的交通信号配时优化系统,该系统将小样本的车辆轨迹作为唯一输入,不依赖任何检测器。提出的概率时空图在Newellian坐标下建立了随机点队列模型和车辆轨迹之间的联系,该模型可以通过聚集足够的历史数据来重建循环时空交通状态。还提供了优化算法来更新优化交叉口交通信号配置参数。该系统在密歇根伯明翰进行了实地测试,结果表明,它将信号交叉口的延误和停车次数分别减少了20%和30%。

展示视频

1、简介

近年来,越来越多的车辆轨迹数据来自各种联网车辆服务,如路线导航、路边援助和叫车服务。通过车辆轨迹数据来监测交通,比固定位置监测器和传感器有更多优点,覆盖范围比检测器数据大得多,因为它几乎可以在每个十字路口使用,特别是那些交通量较大的十字路口(如图1a)。检测器数据只能提供某些位置的交通量和估计速度,而车辆轨迹数据跨越整个时空空间,提供更丰富的信息,如延误、停车次数和行驶路径(图1b)。这为交通信号优化提供了前所未有的机会,可以减少交通拥堵,而无需在物理道路基础设施上安装额外的检测器。

bacf31500a6da57f4bbf20f92a0f0769.png图1a 42799d38230aa5b03e8834102ff5aae7.png图1b

1.1 研究目的

本文的重点是在不依赖任何路侧检测器器(如线圈、摄像头)的情况下,使用联网车辆轨迹来优化固定时间交通信号。虽然已有许多研究对联网和自动驾驶汽车(CAV)的交通信号控制进行了研究,但这些研究都假设了较高的渗透率(CAV占车辆总数的比例),这在目前的实践中是不现实的。在本研究中,我们的目标是在当前可用的市场渗透率下,利用车辆轨迹优化交通信号。在这种情况下,一个主要的挑战是对整体交通状态的稀疏和不完整观测。一些研究提出通过统计方法来估计某些交通流参数,如交通量或排队长度,但由于缺乏明确的交通流模型,这些方法只能用于交通监控目的。对于交通信号优化来说,预测不同交通信号参数下的交通流性能的能力非常重要。

1.2 现有研究

随机交通流模型可用于从不完全观测中估计和预测整体交通状态。然而,大多数现有的交通流模型并不适合车辆轨迹观测。欧拉坐标和拉格朗日坐标是现有交通流模型中使用最多的两种坐标系统(图1c)。

9761fc4fc4f45d28f145520f2413c0e6.png图1c

欧拉坐标将时空空间划分为网格,并将交通状态定义为每个网格中的密度。轨迹数据不提供欧拉坐标的测量,因此不能直接用于校准传统的LWR模型及其变体。车辆轨迹数据以拉格朗日坐标的形式记录车辆的运动轨迹,但拉格朗日坐标下的交通流模型维数较高,不适合大规模应用。此外,利用欧拉和拉格朗日坐标的模型在高维时扩展到随机设置时变得更加复杂。由于缺乏合适的基于车辆轨迹数据的交通流模型,只有少数研究利用这些数据进行启发式的交通信号优化尝试,实施范围非常有限。有关相关工作的更全面的回顾,请参阅补充部分2。

1.3 研究思路

本文提出了一种基于Newellian跟驰模型的Newellian坐标下的随机交通流模型。我们证明了在所提出的Newellian坐标下的简单点队列模型可以通过概率时空图充分捕捉时空交通状态。这种简化是可行的,因为大多数系统不确定性来自随机交通需求和低渗透率下的稀疏观测,忽略了随机和异质驾驶行为。该模型的主要优点是它是一个低维的随机模型,并且可以直接将车辆轨迹数据作为输入进行标定。它使我们能够应用不同的估计算法来估计未知的交通状态和参数。我们证明了即使在低渗透率下,通过聚合足够的历史数据,也可以准确地重建循环流量状态。这使得我们能够开发出可以大规模应用的交通信号优化方法(图1d)。

ac1cef3d8acda9a1b36a7a3908e138db.png图1d

基于所提出的方法,我们提出了一个基于互联车辆服务提供商收集的车辆轨迹数据的大规模交通信号优化系统(OSaaS:优化信号即服务)。OSaaS是一个闭环信号优化系统,包括监测、建模、诊断和优化(图1e)。在每次重定时迭代中,首先根据收集的轨迹计算延迟和停止测量以评估交通性能。然后根据所提出的交通流模型估计出渗透率和到达率等交通流参数。基于校正后的模型,诊断模块找到不同信号配时参数下的交通性能最优差距,该差距表示不同的交通信号重新配时优化的空间。优化算法的发展,以更新信号配时参数的交叉路口,显示出改进的潜力。通过这种方式,OSaaS系统可以每隔几周周期性地动态优化交通信号,而目前的实践需要3~5年。

9cddd6cf9af14c42e08e7cd708efc9ce.png图1e

1.4 实验和结果

车辆轨迹数据来自通用汽车(GM),系统测试于2022年3月在密歇根州伯明翰市现场实施,包括全市范围内的34个城市信号交叉口的监测、建模、诊断和优化。大多数这些信号交叉口没有配备任何车辆检测器,因此提出的系统提供了以前无法获得的机会。新固定配时方案的实施大大减少了控制延误和停车次数。通过利用轨迹数据作为唯一的输入,且不需要任何额外的基础设施,OSaaS为交通信号修正配时提供了一个更具可扩展性和经济性的解决方案,该解决方案可以应用于世界上每一个固定配时的交通信号。

2、方法

2.1 基础模型

2.1.1 Newellian坐标

Newellian坐标建立在所有车辆都遵循同质确定性Newellian跟驰模型的假设之上。这一假设适用于以间断交通流为特征的城市交通,车辆轨迹的主要特征是走走停停,车辆延误主要来自交通信号和排队造成的停车时间。

39e96b8def1978e3f3940b79b6fce7e6.png图2a

2.1.2 随机点队列模型

通过Newellian坐标可以将所有的车辆轨迹转换为点队列模型(point-queue)表示。由于不完全观测和随机交通需求所带来的不确定性,需要采用随机模型。通过应用随机到达过程,可以很容易地将确定性点队列模型转换为随机模型(即随机排队模型)。图2c显示了如何使用概率时空(PTS)图将随机点队列模型投影回时空空间。通过绘制每条边并将其透明度设置为关联概率,PTS图直接显示了车辆轨迹的时空分布。

fdf0e68627dc577117bfb828c39163da.png图2b,2c

2.1.3 概率图模型

所提出的随机点队列模型和PTS图使我们能够建立一个概率图模型(贝叶斯网络),该模型将观测结果与未知的交通状态和参数联系起来(图2d),有三个主要组成部分:

  1. 参数Θ包括渗透率和到达率。它还可以包含其他预先确定和校准的参数,如自由流动速度,堵塞密度和转弯比(补充部分5)。这些参数被假设在一天的特定时间内是固定的。

  2. 交通状态X,包括到达、离开和排队长度。

  3. 观测值Y来自车辆轨迹数据

2f893a2d88b319d4dc017bde454a0fa7.png图2d

图2e给出了一个例子,显示了在假定的交通状态和参数下,在某一时间步长可能观察到的不同轨迹,在补充视频3中也有相关的说明。基于概率模型(图2d),可以采用不同的统计估计方法从稀疏观测的车辆轨迹中估计未知的交通状态和参数。

79d6452981bb44025d1090490c0f50fe.png图2e

2.2 交通状态和参数估计

本文采用矩估计的方法来估计包括渗透率和到达率在内的交通参数。该估计器的直觉是将模型估计值的平均延迟与观测轨迹的测量值相匹配。有了估计的交通参数,可以通过随机点队列模型和PTS图直接导出交通状态。

2.2.1 独立交叉口场景

图3a显示了3个周期的时空图,由于渗透率低,观测到的轨迹比较稀疏。这些相同时间(TOD)的轨迹可以聚合到一个周期,得到如图3b所示的聚合TS图。每条轨迹移动一个整数周期,使它们的到达时间在同一个周期内。

3dbf92d3cbf373a251816c32d7b184ef.png图3a 7306bec1fa614ce896b7c1c0dfffb3c9.png图3b

对于图3b中的每条轨迹,都可以提取纽利坐标系下的到达和离开时间,得到的到达和离开时间直方图如图3c所示。请注意,由于车辆轨迹是根据它们的自由流到达时间聚合的,因此如果一些车辆在到达的周期内未能通过十字路口,则可能在下一个周期中离开。

168f3b4be7f5c028cf4cd0d6b05fab62.png图3c

在给定足够的车辆轨迹数据的情况下,可以根据总循环次数、每时间步长的单位流量和给定的渗透率对直方图进行缩放,从而估计车辆到达和离开的概率分布。

69f11db8ff1c18d80055ae73f9c0f6c2.png图3d

然后可以确定最佳渗透率,在此情况下,模型估计的平均延迟与观测轨迹的测量点相匹配,如图3e中的红色虚线所示。最后,将估计的渗透率应用于上面的方程,即可确定到达概率轮廓,完成该运动的交通参数估计。

0a63793564c9a67d34ad25a0e6cce85b.png图3e

将估计的交通参数作为输入,可以基于随机点队列模型直接导出交通状态。图3f是固定周期的PTS图,显示了车辆轨迹的时空分布。颜色较深的区域表明有更多的车辆在上面行驶。这个PTS图直接对应于聚合的TS图(图3g),这两个图都显示了一个周期内的平均或循环交通模式。

cdf2675abdeba56dbc4f826435449f97.png图3f,3g

2.2.2 主干道协调控制场景

类似的估计方法也适用于由多个路口组成的干线。图4为Adams道路(北向)的时空交通状态重建图。图4b是干线聚合时空图,它是将所有沿路径的聚合时空图组合而成。为了可视化效果,每个方向的聚合时空图在几个周期中重复,以便轨迹可以遍历整个干线。图4c为基于标定后的随机交通流模型生成的相应PTS图。

1eef17360ffe798f723c581c931b38e4.png图4-a,b,c

排队区域可以从两个时空图(图4b,c)中提取,并用于验证目的。图4e、f分别是从聚合的时空图和PTS图生成的空间平均速度热图。为了获得空间平均速度热图,将两张TS图按照一定的时空间隔(10米和3秒)分割成网格,然后计算每个网格的空间平均速度为网格内的总行驶距离除以总行驶时间。根据预先设定的速度阈值,将时空空间划分为排队区和自由流区。白色虚线是排队区域(深色)和自由流动区域(浅色)之间的边界。这些边界线在交通流理论中也被称为冲击波。

03dd92b7f792615a5d050cc463cf2e3a.png图4-d,e,f

2.3 诊断优化

OSaaS交通信号诊断模块查找相对于不同信号配时参数的最优性差距。由于校正后的交通流模型明确将交通信号参数作为输入,因此可以在假设交通需求不变的情况下,直接用于预测不同信号参数下的网络性能。对于独立交叉口,周期长度和绿信比通常不需要进行大的改变,因此采用基于梯度搜索方法进行优化。梯度的符号表示可以改善系统性能的方向,而梯度的大小量化了潜在的效益。输出诊断结果被分类为不同的具体问题,如绿信比不均衡,周期长度不足等。这些诊断结果直接用于生成新的信号配时方案,这些方案本质上是在梯度方向上移动一定的步长。

2.3.1 单点优化

0a47826a32b662cacad1533125eb7c91.png图5a

一个示例,一个两相位十字路口,由主次街道组成(图5a)。图5b、c为早高峰时段的绿色分裂和周期长度诊断图。图5b表明通过增加主要相位的绿灯时间可以降低交叉口的总小时成本,图5c表明通过减少周期长度可以改善交叉口。如果预期效益超过预定的阈值,则将该交叉口识别为具有改进潜力的交叉口,并将相关参数在新的信号配时方案中向改进方向移动。

f21b5a3c850b394ab8142d7e6300d765.png图5b、5c

2.3.2 干线优化

图5e展示了一些基本的干线协调控制概念,包括绿波带、相位差等。协调的主要目标是优化每个交叉口的相位差,使车辆在穿越多个交叉口时少停车。对于协调诊断,每对相邻的交叉点组成一对。然后,我们对它们之间的相对相位差进行直线搜索,确定更好的协调潜在机会。

以前两个交叉口为例,图5f显示了不同附加相位差下的预测总延误和停车次数。可以看出,如果再增加36秒的相对相位差,这两个路口的总延误和停车次数将分别减少约16%和27%。

248b91232b6b5f0bb7b66ab2e6ff2b1e.png图5-d,e,f

限于篇幅,细节请详细阅读原文。


如果您喜欢我们的内容,麻烦点个在看点赞,方便您及时收到更新推送,感谢支持。

欢迎扫下面二维码加入智能交通技术群!

8384c6f9f1e4efa73f431ccbd125d7e6.jpeg

扫描加入免费的「智慧城市之智慧交通」知识星球可了解更多行业资讯和资料。

efa02b645389517bb906399e670fcfc3.jpeg

欢迎加入智能交通技术群!

联系方式:微信号18515441838

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值