疲劳驾驶会影响驾驶人的反应速度、注意力和判断能力,据统计,我国每年因疲劳驾驶直接引发的道路交通事故占全国交通事故总量的21%,疲劳驾驶事故死亡率高达83%。可见,疲劳驾驶是造成群死群伤交通事故的重要因素之一。本文以山东省为例,从多源数据汇聚分析、分级分类模型构建、模型数据处理判定流程、干预措施和结果处理四个方面对省市一体高速公路全车型疲劳驾驶监测预警展开研究,建立了2个大类、4个等级的8个模型,对多源数据碰撞进行分析,以实现准确识别高速公路全车型的疲劳驾驶行为,供参考。
一
疲劳驾驶行为检测方法的相关研究
徐松等在《疲劳驾驶检测技术研究综述》一文中提出,疲劳驾驶的检测方法包括自我评价、反馈应答、面部视频专家分析法的主观评价和基于生理信息、操控行为、行车状态、机器视觉、多源信息融合的客观度量方法。法比奥等在《基于机器学习技术的驾驶员分心实时检测系统》中对疲劳驾驶行为的检测方法进行了详细介绍,其中,基于生理信息的检测是使用生理传感器实时监测驾驶人的生理状态,如心率监测器、脑电图仪等;基于行车状态的检测信息包括车辆变道、方向盘转动幅度以及车辆的动态信息;基于机器学习的检测是通过摄像头监测驾驶人的面部表情、眼睛状态,提取出与疲劳相关的特征,如眼睛闭合时间、眨眼频率等。黄淑兵等在《基于卡口行车轨迹的疲劳驾驶车辆分析算法研究》中提出一种基于卡口行车轨迹的疲劳驾驶车辆分析算法,从全国机动车行驶轨迹库中抽取目标车辆的历史通行轨迹记录,经计算提取经常疲劳驾驶线路集合以及疲劳驾驶违法行为的高发点位。牛毅等在《基于数据挖掘的高速公路货车交通事故影响因素关联分析研究》中针对高速公路的货车交通事故数据,利用社会网络分析法、Apriori关联算法和可视化分析等技术对发生时间、事故形态、事故地点(桩号)和事故原因等因素深层次分析。崔晋皓等在《基于人眼特征的疲劳驾驶状态检测方法》中提出了一种基于人眼特征的驾驶疲劳状态检测方法,借助实时眨眼检测算法及数据分类方法分析了眼部特征,通过实车试验采集了多种驾驶疲劳状态检测的常用指标,并对比分析了各指标与驾驶人疲劳程度的相关性。张博熠等在《基于眼嘴状态识别网络的疲劳驾驶检测》中提出了一种结合多特征融合与状态识别网络的疲劳驾驶检测方法,识别眼嘴状态,并对双眼开合状态和嘴部是否哈欠进行识别。
综上所述,目前国内外对疲劳驾驶的客观监测方法主要分为三种:第一种需要驾驶人佩戴设备测量其生理特征,如脑电信号、心电信号、脉搏等,这种方法检测疲劳驾驶准确度高,但是成本高且有可能影响驾驶;第二种依赖于图像检测,检测驾驶人的眼动特征、瞳孔大小、眨眼频率等,这种检测方法受周围环境和摄像头位置影响较大;第三种通过提取车辆的运行状态,包括时间、地点、车速、转弯等数据,生成用于疲劳驾驶的模型。然而,疲劳驾驶是一个动态累计的过程,其取证、认定、查处都具有较高的难度,与普通违法行为不同的是,单个地市无法通过传统的断面式取证设备以及辖区自身数据进行有效监测,这给交通管理带来了巨大困扰。当前疲劳驾驶行为分析一般只针对安装了行驶记录仪的12吨以上大货车,未延伸到其他车型的监测预警。加强对疲劳驾驶检测是保障交通安全、降低事故风险、提升驾驶人工作质量等多方面的重要举措,它不仅涉及人的生命安全,也直接牵扯到财产安全和社会公共利益。因此,有必要进行更深入的研究。
二
疲劳驾驶行为监测预警干预模型的研究思路
为实现省市一体高速公路全车型疲劳驾驶行为的监测预警干预,本文按照“数据融合治理—全车型疲劳驾驶模型构建—全省数据分级分类及下发—疲劳驾驶车辆预警干预拦截和安全引导”的流程思路展开研究,技术框架图如图1所示。
图1 总体设计框架图
在数据融合治理阶段,汇聚多网多源数据10余类,对重复数据、无效数据、错误数据等进行筛选过滤,并建立数据标准体系,对数据统一转换;在全车型疲劳驾驶模型构建阶段,对影响疲劳驾驶的相关因素进行综合分析,结合连续行驶4小时休息不足20分钟涉嫌疲劳驾驶、生理上涉嫌疲劳后驾驶等要素,全面了解疲劳驾驶发生的原因和影响因素,构建了8个研判子模型;在全省数据分级分类及下发阶段,通过8个研判子模型的数据分析,根据影响因素置信度与预警结果,将预警信息进行分级分类,划分为2大类、4个等级,并及时下发到各交警支队;在疲劳驾驶车辆预警干预拦截和安全引导阶段,构建目标车辆路径分析预测子模型和时空到达预测子模型,对识别出疲劳驾驶嫌疑的车辆进行诱导提醒、布控拦截,如图2所示。
图2 监测识别出的疲劳驾驶车辆
(一)多源数据汇聚分析
收集卫星定位、ETC过车、卡口过车、手机信令、路网、路况、气象、执法站、车驾管、诱导屏等10余类数据,将数据中的重复数据、错误数据和时空过大的数据进行筛选过滤,并通过填充、插值等算法对缺失数据进行处理。获取车辆在道路上行驶的实时位置,将涉嫌疲劳驾驶数据中的位置描述相关信息通过逆地理编码服务转换到路网上,再通过卡口数据与GPS数据、ETC数据进行实时的数据校验,比对车辆捕获时间,获取车辆最近一次确切位置。将数据缩放到特定的范围或分布,定义疲劳驾驶特征标签并提取出有用的特征,如行驶时间段、平均速度、持续时间等,转换为可用于建模的特征向量。
采用聚类和分类算法将数据分成预定义的类别,采用关联规则挖掘识别多源数据集中关联项集,采用Apriori等算法分析疲劳驾驶行为的频繁项,综合车辆历史轨迹数据、车型、道路限速值等数据,训练车辆轨迹预测算法和路径规划预计到达算法。根据业务需求,将数据集分成训练集和测试集,选择合适的建模方法,如线性回归、决策树、深度学习等算法,以便于训练模型,并在测试集上进行评估模型的性能。
(二)分级分类模型构建
基于多网、多源异构数据建立了2大类、4个等级的8个监测模型及1个拦截查处模型,实现了高速公路全车型的疲劳驾驶行为监测预警干预,工作流程如图3所示。
图3 工作流程图
1.分析结果的分级分类管理:根据实际业务需求,将疲劳驾驶分为涉嫌疲劳驾驶和生理上涉嫌疲劳后驾驶两大类,结合危险程度又分为两个级别。具体如下:
(1)甲类:涉嫌疲劳驾驶车辆(连续行驶4小时且中途休息时间小于20分钟的车辆)。按照准确率又分为甲类一级(置信度高)和甲类二级(置信度一般)。
(2)乙类:生理上涉嫌疲劳后驾驶的车辆(行程超过6个小时或夜间22时至次日4时高频次通行高速公路的蓝牌绿通车)。按照不同车辆类型又分为乙类一级和乙类二级,乙类一级是指从省外进入山东省且行程超过6小时的全部车辆;乙类二级是夜间22时至次日4时高频次通行高速公路的蓝牌绿通车。
2.涉嫌疲劳驾驶分析模型:结合上述数据进行模型搭建,通过反复测试验证,目前已建立8个监测模型及1个拦截查处模型,具体如下:
(1)甲类一级:数据汇聚去重后实施下发。模型1(ETC数据):主线门架时间和省内高速公路收费站入口时间差大于4小时且相邻门架的通行时间均小于20分钟的车辆;模型2(手机信令数据):车主电话与车辆伴随且在高速公路上连续行驶4小时的车辆;模型3(12吨货车定位数据):数据连续且超过1000条的车辆。
(2)甲类二级:模型4中的黄牌车辆与模型5的数据进行碰撞,重合的数据即下发,模型4中的蓝牌车辆数据单独实时下发。模型4(ETC数据):主线门架时间和省内高速公路收费站入口时间差大于4小时,但相邻门架的通行时间存在大于20分钟,再增加速度判断算法进行甄别后的车辆;模型5(12吨货车定位数据):定位数据不够连续、数量小于1000条的车辆。
(3)乙类一级:数据实时进行分析下发。模型6:进省省界门架时间和省外高速公路收费站入口时间差大于6小时的全部车辆;模型7:省内主线门架时间和省外高速公路收费站入口时间差大于6小时的全部车辆。
(4)乙类二级:数据每月进行更新下发。模型8:每月通行高速公路的次数大于15次且通行时间在22时至次日4时之间的蓝牌绿通车。
拦截查处模型如下:结合车辆历史定位、卡口过车、布控报警等数据,对车辆常用路线进行分析,训练车辆到达概率算法模型,结合路况对疲劳驾驶车辆即将到达的拦截点和到达时间进行更精准的预测。
(三)模型数据处理判定流程
模型1和模型4的判定流程:首先,逐条处理门架的通行流水记录,剔除在途时长不足4小时的数据。然后,根据入口时间、门架交易时间以及passid,读取车辆该次通行的门架流水信息。若所有相邻门架的交易时间间隔小于20分钟,将被判断为甲类一级。若任一相邻门架的交易时间间隔大于20分钟,会进一步对平均速度进行判断。对所有门架通行数据进行分组,每组包含5个门架,并进行迭代计算速度。若速度小于动态值V,将被认定为已经休息,V会随着里程的增加而逐渐增大。
模型2判定流程:采集连续行驶超过4小时的过车数据,使用车驾管数据、路网数据和手机信令定位数据比对拟合算法,判断为甲类一级。
模型3和模型5判定流程:获取GPS定位数据,使用SM4算法进行数据解密,在数据初步治理阶段,筛选省内数据、重复数据,研判疲劳驾驶数据,基于卡口位置校验GPS位置,判断是否有实时抓拍,如果没有,则使用路网位置定位算法;如果有,则更新GPS位置信息。实时统计GPS位置信息,根据GPS实时计数模型,判断是否连续大于1000条,如果是,则判断为甲类一级,否则,判断为甲类二级。
模型6和模型7判定流程:获取ETC数据,使用5个一组速度研判算法,分别计算入省省界门架采集时间和省外高速公路收费站时间之差,主线门架采集时间和省外收费站时间之差,如果大于6小时,则判断为乙类一级,否则剔除。
模型8判定流程:获取ETC数据,提取有绿通车标识的数据,分别判断高速公路通行次数是否大于15次/月,通行时间是否在晚10时到次日凌晨4时,如果是,则判断为乙类二级。
(四)干预措施和结果处理
对于预警等级较低的车辆,将采取短信提示、语音呼叫或诱导提示的方式进行提醒干预。而对于危险等级较高的车辆,巡逻民警将根据其预计到达的目的地进行布控拦截,随后将拦截处置结果以及涉嫌疲劳驾驶的车辆情况反馈至交通指挥中心,从而完成目标车辆的干预处置流程。对于频繁违法的相关企业,将进行源头走访并进行宣传教育。(作者单位:山东省公安厅交通管理局)
本文刊发于《道路交通管理》杂志2024年第5期
审核:李秀菊 / 李佳芯
编辑:赵曼
欢迎扫下面二维码加入智能交通技术群!
扫描加入免费的「智慧城市之智慧交通」知识星球可了解更多行业资讯和资料。
欢迎加入智能交通技术群!
联系方式:微信号18515441838