如今,数据日益成为企业成功的关键。一些领先的数字企业能够及时做出明智决策,为客户提供量身定制的体验,并快速发现新机遇,从而脱颖而出。最近,随着人工智能的关注度突飞猛进,对数据的需求也与日俱增。
无论企业希望实现什么目标,如果无法随时获得高质量数据,就不可能取得成功。尽管科技在不断发展,但对于大多数企业而言,获取企业数据并将其转化为可用资产仍是一项巨大的挑战。
虽然提高数据质量和实现有效治理等诸多挑战存在了几十年,但本报告表明,当今的技术领军人物正在探索克服这些挑战的新方法。单靠新技术可能无法解决问题,不过技术型企业可以借助基于云的、现代化的数据和分析解决方案,采用现代化数据工程实践、打造产品导向型团队并实施更全面的数据管理方法。本报告的调查结果揭示了为何数据管理者们必须跳出现有系统的范围,采 用各种流程、实践和思维方式来帮助其企业以可重复、可扩展的方式解决长期存在的数据挑战。
Thoughtworks拥有丰富的数据现代化经验,熟悉各种曾引发软件工程变革的现代工程实践(例如数据即产品,构建演进式架构,采用Cl/CD和DataOps等实践,发展团队和治理结构),深知如何充分利用这些实践并将其应用于数据标准,从而帮助企业在数据方面做好充分准备,并长期保持这种状态。
有了上述各要素,无论治理要求和数据需求如何变化,企业都始终能快速从数据中获取大量价值。
随着人工智能的发展,越来越多的企业将数据现代化作为核心要努,因此愈加重要的是确保数据战略与更广泛的商业战略紧密结合,同时确保数据管理者们能够清晰阐述各种数据和分析技术可以如何帮助企业业务部门实现其目标。这不仅可以保证数据现代化的变革获得关键的支持,还可以让企业为实现其目标做出更充足的准备,为持续改进、发展和创造价值奠定坚实的基础。
点击文后阅读原文,可获得下载资料的方法。
欢迎扫下面二维码加入智能交通技术群!
点击文后阅读原文,可获得下载资料的方法。
欢迎加入智能交通技术群!
联系方式:微信号18515441838