点击蓝字 关注我们
Ting Wang, Sisi Jian*, Chengdong Zhou, Bin Jia*, Jiancheng Long. Multimodal traffic assignment considering heterogeneous demand and modular operation of shared autonomous vehicles [J]. Transportation Research Part C: Emerging Technologies, 2024, 169, 104881.
https://doi.org/10.1016/j.trc.2024.104881
随着“萝卜快跑”和“无人驾驶出租车”等话题的热度飙升,属于自动驾驶的时代终于到来,城市交通已然进入新阶段!技术革新势不可挡,作为城市交通的参与者,你是不是也对未来交通充满了期待呢?借此机会,这期Lab想与大家分享关于未来交通的新畅想。如果你有任何好的创意或想法,欢迎在后台留言与我们交流。
1 内容导读
目前,多模式交通已成为我国城市交通的典型特征。其中,主要的交通方式包括小汽车(私家车、网约车、出租车)、公交、地铁以及慢行交通。随着自动驾驶技术的快速发展,一种新型的自动驾驶车辆逐渐进入人们的视野:模块化自动共享汽车。下图展示了一种模块化自动车的最新资讯和概念图示,相关信息来源于网站:
https://www.next-future-mobility.com/
从图中可以看出,模块化汽车由一个或多个最小服务单元(即模块)组成,能够通过模块之间的拼接与组合,满足不同数量出行者的需求。每个模块都具备独立的自动驾驶功能,并由企业统一运营,供出行者共享。这种模块化自动共享汽车具有许多显而易见的好处。
试想一下,有5名好友结伴出行,而一辆普通的出租车最多只能同时接待4位乘客时,他们只能无奈地分乘两辆车。这时,如果有更大的车型或模块化的共享汽车,5名好友的出行体验会更好。
再设想一种场景:在高峰期或人流密集的路段,一辆大型公交车拥挤不堪;而在一些人流不太密集的区域或出行低峰期,承载的乘客却寥寥无几。如果城市公交也由不同数量的模块组成,可以灵活编组,在人流密集的区域增加模块,而在客流较少时减少模块,城市交通便能更加高效地运转。
根据上述设想,如果未来模块化自动共享汽车能够融入我们的日常生活,将在降低运营成本、提高出行效率和减少环境污染等方面带来显著优势。因此,本文的研究主要聚焦于两个问题的讨论:
如果将模块化自动共享汽车引入现有的多模式交通系统,这种新型交通方式是否会对传统的交通方式产生持续的冲击?不同交通方式之间将如何竞争与合作?
根据共乘出行者的数量灵活定制模块数量,是模块化自动共享汽车最大的亮点。如何用模型去描述这一现象?以经典的交通分配模型为例,单位的出行需求通常对应一辆车或一名出行者。当多名未知数量的出行者选择共同出行(需要乘坐同一辆小汽车,并选择完全相同的公交或地铁线路和车辆)时,这将给建模带来极大的挑战。
基于上述考虑,本文构建模型并求解,所提出的解决方案或许可以作为参考。
2 模型构建
本文的主要工作是构建模型,描述出行者在多模式交通网络中乘坐私家车、公交、地铁和模块化自动共享汽车的出行行为,并获取整个交通网络的流量分布。这些流量分布的结果能够为交通网络的设计,公共交通线路、站点及发车频率的优化,以及模块化自动共享汽车的最优拼接和调度问题提供理论依据。
我们分网络构建、出行成本评估和出行者行为模拟三个步骤来构建模型,具体如下:
2.1 网络构建
首先,根据原始交通网络,构建多模式交通超网络,其示意图如下所示。
相比于原始交通网络,多模式超网络将独立的公交、地铁线路与道路交通网络相融合。一方面,三层式的超网络允许出行者选择特定的出行方式,例如仅自动共享汽车出行或仅公共交通出行。另一方面,在超网络中,出行者可以通过换乘弧实现不同模式之间的自由换乘,丰富了出行选择。
2.2 出行成本评估
其次,评估使用每种交通方式的路径出行成本,具体考虑以下因素:
出行时间:涵盖多模式超网络中7种路段的出行时间,以及出行者预约模块化车辆的等待时间。
出行费用:公交和地铁按人次收费,模块化车辆则根据车辆大小和出行距离收费。
其他因素:包括公交和地铁的拥挤度以及出行者的时间价值等。
2.3 出行者行为模拟
最后,分别描述私家车出行者和公共交通出行者的行为。
私家车出行者直接驾驶普通小汽车出行,只需选择自己的出行路径。我们假设这一过程遵循随机用户均衡原则,并由交叉巢式Logit(CNL)模型来描述。
公共交通出行者需首先确定共乘人数,并根据共乘者的数量评估使用公交、地铁、模块化车辆或组合出行的人均成本。其次,根据人均出行成本选择具体的交通模式,由多项Logit(MNL)模型描述。随后,采用流量转换方法,将考虑多人共乘的异质性出行需求,转化为常见的同质性出行需求。最后,为同质性的出行需求规划具体出行路径,描述为用户均衡(UE)模型。
根据以上步骤,我们将出行者的行为描述为一个涵盖多模式、多车种和多种均衡原则的模式划分与交通分配组合模型,并将其表述为变分不等式的形式。
3 模型求解
本文提出的变分不等式模型由梯度投影(GPB)算法求解。求解算法的流程框图和详细过程如下所示。该算法由初始化、订单需求划分、比例流量调整和路径流量调整四部分构成,能有效求解大规模交通网络中的交通分配问题。
4 结果讨论
通过在Sioux-Falls网络(24个节点、76条路段、528个OD对、10条公交线路和2条地铁线路)和Chicago-Sketch网络(933个节点、2950条路段、93135个OD对)设计数值实验,分析了所提算法的收敛性,以及多种影响因素对系统性能的影响。
算法的收敛性测试结果表明:梯度投影算法能在极短的时间内(SF:0.5秒;CS:小于1分钟)将间隙函数值收敛到极高的精度。其求解效率主要取决于网络规模和非零流路径的数量。迭代过程中产生的更多的非零流路径,意味着在求解过程中调整更多路径的流量值,进而增加自适应内循环的计算量和求解时间。
出行者类型对系统性能的影响结果表明:高时间价值的出行者更倾向于选择快速但昂贵的出行模式;而低时间价值的出行者则更倾向于选择经济实惠的出行模式。在高时间价值出行者聚集的区域推广模块化自动共享汽车可能会更有利。其次,提供更多的公共交通线路或更便捷的换乘出行选项,以鼓励出行者在多种出行方式之间的换乘,有利于减小系统的总出行时间和总出行价格。
共乘者数量对系统性能的影响结果表明:增加共乘出行者数量对系统性能提升非常有利,体现在总出行时间的缩短和总出行价格的下降。然而,随着共乘出行者数量的增加,使用模块化自动共享汽车的人均成本显著下降,本应选择更经济的公交和地铁的出行者反而转向速度更快的模块化车辆。因此,系统中供应过多小容量的模块化汽车,可能会导致传统公共交通出行方式的用户流失。
自动共享汽车的模块化运营方式对系统性能的影响结果表明:增加每个模块的客容量或增加模块车的长度可以有效提高系统效率。然而,不匹配的模块容量和共乘人数会产生空座位,并造成额外的出行成本。
上述结果进一步验证了模块化自动共享汽车在提高出行效率、降低出行成本和提升出行体验方面的优势。
展望自动驾驶技术的未来发展之路,我们既感到振奋与期待,也在深思并持续努力。新兴技术的出现常常带来传统行业的机遇与挑战。我们需要充分发挥新兴技术的优势,同时尽量减少其对传统交通方式的负面影响。在城市交通这一复杂的巨系统中,充分利用每种交通方式的优势与特点,促进各子系统的协同发展,也是推广和应用自动驾驶技术必须面对的重要问题。我们期待通过不断创新与合作,打造更加智能、高效、可持续的未来交通体系。
欢迎扫下面二维码加入智能交通技术群!
您可以通过点击“阅读原文”获取论文原文!
联系方式:微信号18515441838