当前监控视频等影像资料已成为公安交管部门分析道路交通事故成因的重要证据来源,它不仅可以直观呈现事故过程,还可以提供帧率、帧间隔时间等时间参数信息,用于开展车辆行驶速度计算、交通信号灯状态推断等定量化分析应用。显然,视频时间参数的准确性对于定量化分析至关重要,乃至决定着事故定责结果。然而,视频技术经过长期更新迭代后门类繁多,不同监控视频产品的时间生成机制和准确性差异较大,在应用实践中往往简单利用视频OSD(On Screen Display)随屏显示时间(也称画面时间、水印时间、时间戳)来确定帧率、帧间隔时间,一旦OSD时间出现异常就难以正确判断帧率、帧间隔时间,轻则造成许多关键视频被弃用,重则造成误判误用。
视频时间的可信度分析评估难题已长久困扰着公安交警和司法鉴定人员,虽已有部分研究人员展开探索,但研究深度尚显不足,还未形成一套科学的理论方法。本文着眼于这一困境,以视频OSD时间的生成机制深入剖析为基础,全方位、系统性地梳理并总结视频时间的异常特征,并充分考虑到视频采集拍摄、传输、编解码、存储等整个过程中潜在的偏差来源,从理论层面深入挖掘,最终形成时域关联参数集。依据该参数集,进一步明确OSD时间、元数据时间、视频码流时间之间的内在关联关系,构建出时间可信度判别模型,并开展真实事故案例验证分析。
一、视频OSD时间生成机制
(一)OSD技术简介
视频OSD时间是指叠加在视频画面上的日期时间字符信息,通常以“年-月-日时:分:秒(YY-MM-DD hh:mm:ss)”的形式呈现,主要是基于OSD技术实现的。按照内容形式,OSD可分为字符型OSD和位图型OSD,前者叠加显示单行或多行的字符信息,应用较广泛;后者叠加图像或者标志,多见于各种显示器系统或广播电视系统。按照实现原理,OSD可分为模拟OSD及数字OSD两种,模拟OSD是将信号与模拟的视频信号进行同步,有比较成熟的芯片方案支持,缺点是很难叠加彩色的文字、容易因分辨率不够造成画质粗糙;数字OSD是对视频信号进行数字化以后,进行文字或图像的叠加及透明化处理,这种方式灵活性高、易于修改,缺点是实时性要求较高,且会破坏一定程度的视频原始性。图1是模拟OSD和数字OSD的对比,可见数字OSD能够根据背景亮度自动变换字符颜色。
(二)OSD时间生成方式
在监控视频系统中,OSD技术的实现通常有以下3种方式:
1.专用OSD芯片。利用专用OSD芯片能在硬件上直接提供一些功能简单、分辨率低的OSD接口,如字符发生器等。专用OSD芯片针对性强、性能出色、显示元素也较为丰富,但需要进行专门的硬件和软件设计,系统软硬件复杂度高。
2.附带OSD功能的多功能芯片。随着芯片制造技术不断发展,现在许多芯片内部已经集成了OSD的功能,使用本身自带OSD功能的多功能芯片可以实现OSD输出。该方式对系统性能要求相对较低,实现相对容易,但缺少灵活性。
3.程序叠加实现。用程序化方式实现,直接在视频缓冲区域叠加OSD数据进行合成显示。该方式对外围硬件无特殊要求,使用相对灵活,但对CPU、总线等系统性能要求较高。
在以上3种方式中,专用OSD芯片需要与视频图像数据压缩处理芯片、主控芯片交互,会存在一定的系统时间同步误差;附带OSD功能的多功能芯片、程序叠加实现方式,则与视频压缩处理芯片高度集成,不存在时间同步误差。由于目前绝大多数网络视频监控系统和嵌入式车载监控视频系统,OSD数据与DSP端的视频编解码都是采用同一集成芯片处理,即两者的系统时间一致,故消除了时间同步误差。
(三)OSD时间特征
虽然在系统时间层面,OSD时间同步误差可以忽略,但是在时间信号与视频码流混合编码的过程往往容易出现误差,通常这种误差在OSD时间上的呈现就是每秒所对应的帧数与时间不一致。
例如,帧率设置为25fps的视频,正常情况下OSD时间中每秒均对应25帧,而实际情况会出现多种形态特征:
特征①:每秒恒定25帧;
特征②:偶尔1秒或几秒(无规律)会少于25帧,其他时间正常;
特征③:间隔1秒或几秒(有规律)会少于25帧;
特征④:每秒出现几帧重复帧,变成每秒30帧;
特征⑤:出现较大间隔跳跃,连续一段时间丢失;
特征⑥:每秒帧数均在25上下变化。
由于OSD时间的异常,造成视频帧率与帧间隔时间难以确定。特征①属于正常现象,特征④属于重复帧现象,特征⑤属于丢帧现象,特征②、③、⑥则比较复杂,有可能是丢帧现象,也有可能属于正常现象。对于OSD时间是否能够真实反映视频帧率与帧间隔时间,需要结合实际情况具体分析。
二、时间可信度评估方法
(一)视频时间误差来源
由于视频从采集拍摄、传输、编解码、存储等过程均涉及时间,其中,传输和编解码过程最易造成时间混乱,而采集拍摄和存储大多与设备自身稳定性相关,属于系统误差,既无法测量也误差较小,可以忽略。
对于网络传输型视频监控系统,多采用流媒体传输。流媒体业务的协议可以划分为两类:控制协议和承载协议。控制协议如RTSP(Real-Time Stream Protocol)、SDP(Session Description Protocol),可以实现控制信息——信令的传输;承载协议如RTP(Real TimeTransport Protocol)可以实现数据的传输。国家标准《公共安全视频监控联网系统信息传输、交换、控制技术要求》(GB/T 28181—2022)对RTSP、RTP等进行了详细规定。基于RTSP、RTP的视频传输经常会出现网络延时、抖动、丢包等异常现象。
延时是网络中的一个重要指标,衡量数据从一个端点移动到另一个端点所需的时间。网络延时通常在几秒钟的时间范围内,延时过大会影响视频连贯性。抖动是基于延时产生的,在网络上连续传输的数据包即便使用相同的路径,也可能会有不同的延时,每个数据包之间的延时不一致称为抖动。对于实时通信而言,经常会出现丢包和网络拥塞,即数据包传输过程中部分数据未能到达目的地而丢失。
延时、抖动和丢包相互关联,但它们并不相同。在视频信号传输过程中,延时和抖动会造成不同的帧码流到达视频编码器的时间间隔不一致,易形成特征⑥所示的异常。通常视频处理芯片有缓存机制,很多时候能够抵消延时和抖动带来的影响,但如果处理器负载过大或网络拥塞,造成延时过大则有可能丢包,即部分视频信号来不及编码处理就被丢失。丢包会带来严重的视频质量问题,如花屏、丢帧、跳帧等,特征⑤就是丢包引起的。
除了传输,视频编解码性能也是造成视频时间异常的重要影响因素。视频编解码效率不高有可能反过来造成网络传输延时、抖动和丢包。为了方便传输,通常采用压缩编码技术将视频采集数据中的冗余信息去掉。目前,主流视频编码技术有MJPEG、MPEG1/2、MPEG4(SP/ASP)、H.264/AVC、H.265/HEVC等,MPEG1/2主要在早期闭路电视监控系统中应用较多,MPEG4和H.264/AVC则是网络视频监控系统的首选,MJPEG则在嵌入式行车记录仪视频系统中应用较多。在视频编解码出现问题时,也会带来视频帧丢失,OSD时间出现异常,如特征③和④。
(二)视频时间关联参数集
本文在研究中发现,OSD时间只是视频时间呈现的方式之一,在视频文件封装和视频码流中还隐藏着许多与传输、编码等时间关联的参数,利用Mediainfo视频参数检测工具和FFMpeg音视频编解码工具对多个类型视频进行梳理分析研究,形成视频时间关联参数集见下表1。
(三)视频时间可信度判别模型
表1中视频时间关联参数集之间存在许多逻辑关联,通过互相校验可以实现时间的可信度分析。对时间可信度的判别分为两个层次,第一层次判断视频时间是否连续,有无丢帧、重复帧现象;第二层次则是视频的真实帧率/帧间隔时间。视频时间连续和真实帧间隔时间是最终目的。本文通过对多段视频进行分析,并结合视频时间关联参数集以及视频时间误差来源、视频时间形成机制,构建了表2所示的视频时间可信度判别模型。
表2中帧间隔时间分析中,帧率来自视频文件元数据,通常利用视频播放器可以直接查看;每秒帧数来自OSD时间中每秒的图像帧数;码流时间基可以通过FFMpeg中的ffprobe工具进行帧分析获取。
(四)实验分析
本文基于上述模型对某一网络监控视频文件进行分析,该视频画面见图2。通过播放视频,其右上角OSD时间每秒固定播放14帧,画面起始时间为“2019-08-29 14:58:00”,画面结束时间为“2019-08-29 14:58:32”。利用Mediainfo工具查看该文件元数据信息,总时长为17秒840毫秒,显示帧率为25fps,原始帧率为14fps。显然该视频存在时间异常,视频画面OSD时间起始到结束约32秒,但元数据信息中总时长仅17秒840毫秒,且帧率25fps与OSD中14fps不一致。
利用ffprobe工具查看视频码流特征,其PTS/DTS时间戳连续,且时间基为0.04(相当于帧率25fps),共有446帧图像。视频画面目标运动连续,但播放速度明显较快。
显然,该视频的时间特征与表2中第2种形态所述条件一致,则可以判定该视频时间连续,且帧间隔时间为1/14,即实际帧率为14fps。反过来验证,446帧图像按照帧率14fps计算,则总时长应为32秒,与视频OSD起止时间一致,同时在文件元数据中也显示原始帧率为14fps。基于帧率14fps计算视频中肇事电动车(见图3)的行驶速度约为33km/h,如果采用帧率为25fps,则速度为59km/h,明显与事实不符。因此,本文所提出的判别方法有效且准确获得了真实的视频帧率,实现了视频编码封装的错误造成了时间异常分析。
三、结语
本文针对视频时间可信度难以确定的问题,通过从系统原理出发,将视频显示时间、视频文件元数据、视频码流等涉及时间的参数形成视频时间关联参数集,并对7种时间异常现象提出了判别模型,并采用案例进行了验证。本文可以解决大部分时域失真视频中时间可信度评估问题,但对于特殊编码的视频仍存在困难,因此,在实践中还需要进一步拓展应用场景。(作者及单位:宋耀鑫 魏然 严永 马兆有,公安部道路交通安全研究中心)
本文来自公安部科技强警项目“道路交通事故数字影像证据的时间可信度研究”,项目编号:2022JC27
本文刊发于《道路交通管理》杂志2025年第2期
审核:李秀菊 / 李佳芯
编辑:潘乃瑞