这篇文档是香港特区政府数字政策办公室委托编写的,主要是给大家提供生成式人工智能技术及应用方面的一些规则和指引,方便技术开发者、服务提供者和服务使用者参考。
生成式人工智能
-
基本概念:它能根据人的指令和大量数据,自动生成文本、图像等内容,是现代人工智能的重要分支,技术原理基于深度学习的生成模型,主流模型有 GANs、Transformer 等 。
-
内容生成模式:像文本生成、图像生成、音频生成、视频生成等,各有不同的生成方式和应用场景。比如文本生成能写文章,图像生成可以根据文字描述画图。
-
应用领域:在很多行业都有应用,如知识问答、角色扮演、辅助写作、辅助编程、数学推理、人工智能代理、人工智能艺术等。例如在智慧客服中回答问题,在游戏开发里生成动画。
生成式人工智能存在的问题和风险
-
技术局限:存在模型幻觉(生成内容与现实不符)、模型偏见(存在特定偏好)、黑盒问题(内部机制不透明)、数理能力有限、对输入变化敏感、数据完整性风险等。比如模型可能会虚构内容,导致决策失误。
-
服务风险:可能引发内容安全问题,比如传播不良内容、制造谣言、模型越狱(绕过安全机制)、数据泄露等。不同风险等级的应用有不同监管策略。
-
模型生命周期风险:在规划与数据获取、模型开发、部署与集成、使用与维护等阶段都存在风险,如数据投毒、知识产权风险、系统集成风险、内容安全风险等 。需要在各阶段采取措施降低风险,并且进行人为监督。
治理生成式人工智能的方法
-
治理维度:从个人资料隐私、知识产权、犯罪防治、真实可信、系统安全五个维度进行治理。例如,利用联邦学习技术保障个人资料隐私,防止数据泄露。
-
治理原则:遵守法例,确保技术应用符合法律法规;安全透明,降低技术风险和不透明性;准确可靠,减少模型问题,提供查证途径;公平客观,消除模型偏见;实用高效,提升技术效用。
给不同人群的实用指南
-
技术开发者:要组建完整团队,包括数据团队、算法工程团队等,遵守法规,保障知识产权,提高技术安全性和可靠性,建立运营原则和合规审查机制。
-
服务提供者:建立负责任的服务框架,保证服务合规、资料安全、系统安全和可信性;遵循服务建设流程,进行服务采购、风险评估、试点项目和服务维护。
-
服务使用者:合法合规使用服务,不用于违法目的;坚持自主判断,验证生成内容;了解责任义务,保护隐私;谨慎传播内容,尊重知识产权。
其他相关内容:介绍了不同国家和地区对生成式人工智能的治理要求,还阐述了香港在这方面的治理框架和政策框架,强调平衡创新与监管,不同行业有不同的应用原则和指南 。