前言
本文主要介绍最近两篇 ECCV 2022 Oral 的工作,分别在 offline 和 online 范式下的视频实例分割(Video Instance Segmentation, VIS)任务上取得了目前最高的性能,并在CVPR2022第四届大规模视频物体分割挑战赛( 4th Large-scale Video Object Segmentation Challenge)的视频实例分割赛道上取得第一名,模型和代码均已开源!
SeqFormer:https://arxiv.org/abs/2112.08275
IDOL: https://arxiv.org/abs/2207.10661
官方代码地址: https://github.com/wjf5203/VNext
SeqFormer:Sequential Transformer for Video Instance Segmentation, ECCV, 2022 (Oral).
SeqFormer:用于视频实例分割的序列Transformer
基于 vision transformer, 该文章提出了一种 offline 的 VIS 算法:SeqFormer。SeqFormer为视频中的每一个物体建立对应的特征,并使该特征拥有提取全局信息的能力。与现有的算法不同,SeqFormer 提出了一个 Query 分离的机制,

本文介绍了ECCV 2022两篇Oral论文SeqFormer和IDOL在视频实例分割(VIS)领域的最新进展。SeqFormer通过Query分离机制在不依赖额外跟踪分支的情况下实现高精度的视频实例分割。IDOL则提出了在线模型的新范式,通过对比学习增强实例特征,提高了在线模型的性能,尤其是在YouTube-VIS和OVIS数据集上超越了现有方法。两篇论文的代码已开源,并整合到VNext框架中。
订阅专栏 解锁全文
404

被折叠的 条评论
为什么被折叠?



