-
任务描述 与前面提到的情感倾向性分类只需要判断整个输入文本的情感倾向性不同,面向aspect的情感分类要将文本中的实体识别出来,并判断说话人对不同实体的情感倾向性。例如,在句子“Trump is a nuisance.”中,明显说话人对Trump持消极态度,面向aspect的情感分类任务就要把Trump和Negative识别出来。
-
数据集 我们使用LCF-ATEPC的数据集,全量数据可以https://download.csdn.net/download/qq_38735017/87358728下载,
-
这是一个评论。为了便于演示,我们仅使用其中有关notebook的部分数据,数据为对笔记本电脑的评价,在./datasets目录下,其中Laptops.atepc.train.dat为训练数据,notebook.atepc.test.dat为测试数据。数据格式与NER任务的数据格式相似,共包括三列,第一列为token,第二列表示Aspect的标注,第三列为对应的情感,不同句子之间用空行分隔,如下图所示。这一条记
基于Bert实现情感分类任务
最新推荐文章于 2024-07-16 21:16:20 发布
该博客介绍了如何基于PyTorch和hugging face的BERT模型实现面向aspect的情感分类任务。详细步骤包括数据准备(读取、转换为InputFeature)、模型构造(加载预训练BERT、定义网络结构)、模型训练(设置优化器、输入处理)和优化思路(预训练词嵌入、正则化)。
订阅专栏 解锁全文
1242

被折叠的 条评论
为什么被折叠?



