基于Bert实现情感分类任务

该博客介绍了如何基于PyTorch和hugging face的BERT模型实现面向aspect的情感分类任务。详细步骤包括数据准备(读取、转换为InputFeature)、模型构造(加载预训练BERT、定义网络结构)、模型训练(设置优化器、输入处理)和优化思路(预训练词嵌入、正则化)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 任务描述 与前面提到的情感倾向性分类只需要判断整个输入文本的情感倾向性不同,面向aspect的情感分类要将文本中的实体识别出来,并判断说话人对不同实体的情感倾向性。例如,在句子“Trump is a nuisance.”中,明显说话人对Trump持消极态度,面向aspect的情感分类任务就要把Trump和Negative识别出来。

  • 数据集 我们使用LCF-ATEPC的数据集,全量数据可以https://download.csdn.net/download/qq_38735017/87358728下载,

  • 这是一个评论。为了便于演示,我们仅使用其中有关notebook的部分数据,数据为对笔记本电脑的评价,在./datasets目录下,其中Laptops.atepc.train.dat为训练数据,notebook.atepc.test.dat为测试数据。数据格式与NER任务的数据格式相似,共包括三列,第一列为token,第二列表示Aspect的标注,第三列为对应的情感,不同句子之间用空行分隔,如下图所示。这一条记

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机毕设论文

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值