详细的讲解一下递归

用一个走阶梯的例子 每一次走一步或者三步
f(n)=f(n-1)+f(n-3) 当f(1)=f(1-1)+f(n-3) 第一个等于0 错误
当f(2)=f(2-1)+f(2-3) 第一个二负数 错误
当f(3)=f(3-1)+f(3-3) 第二个等于0 错误 这些就是终止条件
f(1)=1 f(2)=1 f(3)=2
第一个台阶有一种走法 第二个台阶有一种走法 第三个台阶有两个走法
第四个台阶有三种走法 一步三步 一步一步一步 三步一步
public class DiGui_TaiJie {
public static void main(String[] args) {
for (int i = 1; i < 6; i++) {
System.out.println(i+"个台阶"+f(i)+"种算法");
}
}
public static int f(int n){
if (n==1)return 1;
if (n==2)return 1;
if (n==3)return 2;
return f(n-1)+f(n-3);
}
}
定义一个乘法递归
public long factorial( long number )
{
if ( number <= 1 )
return 1;
else
return number * factorial(number- 1 );
}
// 例如number是5
// return 5* factorial(4)
// 5*4* factorial(3)
// 5*4*3* factorial(1)
// 5*4*3*2* factorial(1)
// 5*4*3*2*1
这篇博客深入浅出地讲解了递归的概念,并通过实例——走阶梯问题,详细阐述了递归的应用。文章指出在解决阶梯问题时,递归公式为f(n)=f(n-1)+f(n-3),并明确了错误的终止条件。接着,作者给出了递归求解阶梯走法的具体步骤,以及不同台阶数的走法数量。最后,文章还提及了使用递归进行乘法运算的定义。
922

被折叠的 条评论
为什么被折叠?



