对抗样本攻击发生在模型的验证阶段,将一个对抗样本输入到网络中,使神经网络发生误判,降低神经网络模型的鲁棒性。
对抗样本攻击中最为重要的生成一个对抗样本,使用生成的对抗样本来攻击神经网络。
首先导入需要用到的包,随后导入模型ResNet,并使用预训练权重
import torch
import torchvision
from PIL import Image
import numpy as np
from pylab import *
model = torchvision.models.resnet18(pretrained=True)
冻结预训练模型的所有参数,使它们在后续的训练过程中不被更新。
# 对抗样本攻击中,我们不希望改变模型本身的参数,所以不计算网络参数的梯度
for param in model.parameters():
param.requires_grad = False
加载数据并预处理
# 设置学习率并加载图片(归一化)
lr = 0.5
x = Image.open('dog2.jpg')
x = torch.tensor(np.array(x,'float32') / 255 - 0.5) # 归一化到-0.5~0.5
# Resnet要求输入为224*224
x = x[:224,:224,:]
# 调准维度顺序
x = torch.permute(x, [2,0,1])
# 增加维度
x = x[None,:,:,:]
# 保存原始图张量
x0 = x.detach()
# 调整成评估模式
model.eval()
vals = []
# 启用梯度计算
x.requires_grad = True
迭代为图片添加噪音
for i in range(50):
x.requires_grad = True
y = model(x)
loss = -torch.mean(y[:,283]) + 0.01*torch.mean((x-x0)**2) # 变得平滑
loss.backward()
vals += [loss.item()]
grad = x.grad[:,:,:,:]
with torch.no_grad():
x = x - grad * lr
if i % 10 == 0:
print(vals[-1])
计算网络的预测值
model(x).argmax()
将张量转化为图像的形式,并进行展示
x = torch.permute(x[0],[1,2,0])
x = x.numpy() + 0.5
x = np.clip(x,0,1)
imshow(x)
663

被折叠的 条评论
为什么被折叠?



