对抗样本攻击

        对抗样本攻击发生在模型的验证阶段,将一个对抗样本输入到网络中,使神经网络发生误判,降低神经网络模型的鲁棒性。

        对抗样本攻击中最为重要的生成一个对抗样本,使用生成的对抗样本来攻击神经网络。

         首先导入需要用到的包,随后导入模型ResNet,并使用预训练权重

import torch
import torchvision
from PIL import Image
import numpy as np
from pylab import *

model = torchvision.models.resnet18(pretrained=True)

冻结预训练模型的所有参数,使它们在后续的训练过程中不被更新。

# 对抗样本攻击中,我们不希望改变模型本身的参数,所以不计算网络参数的梯度
for param in model.parameters():
    param.requires_grad = False

加载数据并预处理

# 设置学习率并加载图片(归一化)
lr = 0.5
x = Image.open('dog2.jpg')
x = torch.tensor(np.array(x,'float32') / 255 - 0.5)       # 归一化到-0.5~0.5
# Resnet要求输入为224*224
x = x[:224,:224,:]
# 调准维度顺序
x = torch.permute(x, [2,0,1])
# 增加维度
x = x[None,:,:,:]
# 保存原始图张量
x0 = x.detach()
# 调整成评估模式
model.eval()
vals = []
# 启用梯度计算
x.requires_grad = True

迭代为图片添加噪音

for i in range(50):
    x.requires_grad = True
    y = model(x)
    loss = -torch.mean(y[:,283]) + 0.01*torch.mean((x-x0)**2) # 变得平滑
    loss.backward()
    vals += [loss.item()]
    grad = x.grad[:,:,:,:]
    with torch.no_grad():
        x = x - grad * lr
    if i % 10 == 0:
        print(vals[-1])

 计算网络的预测值

model(x).argmax()

 将张量转化为图像的形式,并进行展示

x = torch.permute(x[0],[1,2,0])
x = x.numpy() + 0.5
x = np.clip(x,0,1)
imshow(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值