【pytorch】RuntimeError: cuDNN error: CUDNN_STATUS_EXECUTION_FAILED 报错 这个错误主要与 CUDA 或 cuDNN 相关,常见原因包括显存不足或 CUDA/cuDNN 版本不匹配。你可以从调整batch_size开始,逐步排查是否是硬件资源问题或库版本问题。
【Deep-ML系列】Single Neuron with Backpropagation(手写单神经元反向传播梯度下降) 【代码】【Deep-ML系列】Single Neuron with Backpropagation(手写单神经元反向传播梯度下降)
【Deep-ML系列】Pegasos Kernel SVM Implementation(手写支持向量机) Pegasos算法(Primal Estimated sub-GrAdient SOlver for SVM)是一种用于训练SVM的在线学习算法。与标准的SVM优化方法不同,Pegasos通过随机梯度下降(SGD)逐步更新模型参数,使得算法在处理大规模数据时更加高效。在每次迭代中,Pegasos只对一个或一小部分样本进行参数更新,这与传统的批量梯度下降不同。这个特点使得Pegasos在处理大规模数据集时有明显的速度优势。
【Deep-ML系列】Principal Component Analysis (PCA) Implementation(手写主成分分析) 主成分分析(PCA)是一种统计方法,用于将高维数据集映射到一个低维空间,同时保留尽可能多的原始数据方差。PCA的目标是通过找到一组新的未相关的变量(称为主成分),这些变量可以用来解释数据中的大部分变异性。
【Deep-ML系列】Cross-Validation Data Split Implementation(手写交叉验证) 【代码】【Deep-ML系列】Cross-Validation Data Split Implementation(手写交叉验证)
【Deep-ML系列】K-Means Clustering(手写Kmeans聚类) K-Means聚类:事先给定k个簇点以及n个points,经过max_iterations轮次的迭代,每次更新新的簇点。
【Deep-ML系列】Feature Scaling Implementation(特征缩放:standardization & min-max) 【代码】【Deep-ML系列】Feature Scaling Implementation(特征缩放:standardization & min-max)
【Deep-ML系列】Linear Regression Using Normal Equation(正规方程求解线性回归) 【代码】【Deep-ML系列】Linear Regression Using Normal Equation(正规方程求解线性回归)
【Deep-ML系列】Solve Linear Equations using Jacobi Method (雅可比迭代求解线性方程) 会返回一个以输入数组元素为对角线元素的。会返回输入矩阵的对角线元素组成的。
【Docker】报错解决:“[Errno 14] curl#7 - “Failed to connect to 2a03:2880:f10e:83:face:b00c:0:25de: 网络不可达” 最近在安装Docker容器,执行命令,配置Docker的yum源时报错。出现如下截图,代表安装成功(如果还是不行,在最前面加上 sudo)
CentOS:yum报错“Could not resolve host: mirrorlist.centos.org; Unknown error“解决办法(2024有效) 最后保存并退出,清理并重新生成yum缓存,成功解决问题。
【Datawhale AI 夏令营】讯飞“基于术语词典干预的机器翻译挑战赛” 机器翻译具有悠长的发展历史,目前主流的机器翻译方法为神经网络翻译,如LSTM和transformer。。对于术语名词、人名地名等机器翻译不准确的结果,可以,避免了混淆或歧义,最大限度提高翻译质量。
WSL+Anconda(pytorch深度学习)环境配置 WSL(Windows Subsystem for Linux)是微软开发的一项技术,允许用户在Windows系统中直接运行完整的Linux环境,无需虚拟机。通过操作系统级虚拟化,WSL将Linux子系统无缝嵌入Windows,提供原生Linux命令行工具、软件包管理器及应用程序支持。它具有轻量化、文件系统集成、良好的交互性及开发效率提升等优点,消除了Windows与Linux之间的隔阂,尤其适合开发者和需在Windows平台上使用Linux工具的用户。
对抗样本攻击 对抗样本攻击发生在模型的验证阶段,将一个对抗样本输入到网络中,使神经网络发生误判,降低神经网络模型的鲁棒性。对抗样本攻击中最为重要的生成一个对抗样本,使用生成的对抗样本来攻击神经网络。首先导入需要用到的包,随后导入模型ResNet,并使用预训练权重。冻结预训练模型的所有参数,使它们在后续的训练过程中不被更新。将张量转化为图像的形式,并进行展示。
NSGA-II 遗传多目标算法(python示例) 最近在准备毕业论文,研究了一下主流的多目标算法,对于NSGA-II,网上大部分代码是全部是面向过程来实现的,本人更喜欢采用面向对象的方式,故采用python面向对象实现了一个示例,实现了对于二元多目标问题的求解。