C语言经典算法之BWT(Burrows-Wheeler Transform)变换

目录

前言

A.建议:

B.简介:

一 代码实现

二 时空复杂度

A.时间复杂度:

B.空间复杂度:

C.总结:

三 优缺点

A.优点:

B.缺点:

四 现实中的应用


前言

A.建议:

1.学习算法最重要的是理解算法的每一步,而不是记住算法。

2.建议读者学习算法的时候,自己手动一步一步地运行算法。

B.简介:

Burrows-Wheeler 变换(BWT,Burrows-Wheeler Transform)是一种用于数据压缩的预处理步骤,它通过重新排列输入文本来构建新的序列,以便于后续进行高效的压缩。

一 代码实现

以下是一个简化的C语言实现BWT变换算法的概述:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

// 假设我们有一个字符数组表示文本
#define CHAR_SET_SIZE 256 // ASCII字符集大小,如果是DNA序列,则可能为4(A,C,G,T)
typedef char TChar;

// 定义一个结构体用于存储轮转后的字符串及其索引
struct StringIndexPair {
    TChar *rotatedString;
    int index;
};

// 函数:对输入文本执行BWT变换
void burrowsWheelerTransform(TChar* input, int length, TChar* output) {
    // 初始化工作区,保存所有轮转后字符串和它们对应的原始索引
    struct StringIndexPair* stringPairs = malloc(length * sizeof(struct StringIndexPair));
    
    // 创建一个新的数组保存每个轮转后的字符串
    for (int i = 0; i < length; ++i) {
        // 轮转字符串
        TChar* rotated = malloc((length + 1) * sizeof(TChar)); // 额外空间存放结束符'\0'
        strncpy(rotated, input + i, length - i);
        strncat(rotated, input, i + 1); // 字符串拼接
        
        // 存储轮转字符串及对应原始位置
        stringPairs[i].rotatedString = rotated;
        stringPairs[i].index = i;
    }

    // 对轮转后字符串按照字典序排序
    qsort(stringPairs, length, sizeof(struct StringIndexPair), compareRotatedStrings);

    /
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JJJ69

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值