提示词工程(Prompt Engineering)是通过精心设计输入指令(提示词),引导AI模型(如GPT、BERT等)生成更精准、符合预期的输出结果的技术。其核心在于理解模型特性,并通过语言优化提升交互效率。
核心原则
明确性
清晰的描述需求,避免口语化,减少歧义,明确任务,如请写出一篇介绍人工智能的文章,需要引用10篇论文。
结构化
将需求拆分成多个子任务或分模块设计提示语,便于模型理解和分析
例子:请写出一篇介绍人工智能的文章
第一,需要有导论,介绍人工智能的发展过程
第二,需要介绍人工智能当前使用的技术架构
第三,需要进行总结,并写出人工智能的发展方向
上下文控制
通过角色设定、场景限制等约束输出范围
例子:你是一名人工智能行业的资深学者,请根据你的理解,写一遍通俗易懂,介绍人工智能的文章
提示语技巧
少样本提示(Few-shot Learning)
根据你想输入的内容或想得到的结果,提供少量示例,帮助模型理解任务模式。
例子:请帮我把以下句子翻译为英语:
输入:你真的很帅-》输出:You are really handsome.
输入:你真的是一个很帅的男生-》输出:“”
思维链提示(Chain-of-Thought)
要求模型分步推理,方便确认推理过程的正确性,提升复杂问题解答能力。
否定提示(Negative Prompting)
明确排除不需要的内容。

被折叠的 条评论
为什么被折叠?



