昇思25天学习打卡营第5天 | 网络构建

27 篇文章 0 订阅
25 篇文章 0 订阅

网络构建

在这里插入图片描述

神经网络模型是由神经网络层和Tensor操作构成的,mindspore.nn提供了常见神经网络层的实现,在MindSpore中,Cell类是构建所有网络的基类,也是网络的基本单元。一个神经网络模型表示为一个Cell,它由不同的子Cell构成。使用这样的嵌套结构,可以简单地使用面向对象编程的思维,对神经网络结构进行构建和管理。

下面我们将构建一个用于Mnist数据集分类的神经网络模型。

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
import mindspore
from mindspore import nn, ops

定义模型类

当我们定义神经网络时,可以继承nn.Cell类,在__init__方法中进行子Cell的实例化和状态管理,在construct方法中实现Tensor操作。

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512, weight_init="normal", bias_init="zeros"),
            nn.ReLU(),
            nn.Dense(512, 512, weight_init="normal", bias_init="zeros"),
            nn.ReLU(),
            nn.Dense(512, 10, weight_init="normal", bias_init="zeros")
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

在构建完成之后,实例化Network对象,并查看它的结构:

model = Network()
print(model)

打印结果为:

Network<
(flatten): Flatten<>
(dense_relu_sequential): SequentialCell<
(0): Dense<input_channels=784, output_channels=512, has_bias=True>
(1): ReLU<>
(2): Dense<input_channels=512, output_channels=512, has_bias=True>
(3): ReLU<>
(4): Dense<input_channels=512, output_channels=10, has_bias=True>

当构造一个输入数据,直接调用模型,可以获得一个十维的Tensor输出,其包含每个类别的原始预测值。

X = ops.ones((1, 28, 28), mindspore.float32)
logits = model(X)
# print logits
logits

Tensor(shape=[1, 10], dtype=Float32, value= [[-1.63367763e-02, 2.81416439e-03, -2.84117088e-03 … -8.47682171e-03, 8.88004084e-04, 8.53544218e-04]])

在此基础上,我们通过一个nn.Softmax层实例来获得预测概率。

pred_probab = nn.Softmax(axis=1)(logits)
y_pred = pred_probab.argmax(1)
print(f"Predicted class: {y_pred}")

Predicted class: [6]

模型层

本节中我们分解上节构造的神经网络模型中的每一层。首先我们构造一个shape为(3, 28, 28)的随机数据(3个28x28的图像),依次通过每一个神经网络层来观察其效果。

input_image = ops.ones((3, 28, 28), mindspore.float32)
print(input_image.shape)

(3, 28, 28)

nn.Flatten

实例化nn.Flatten层,将28x28的2D张量转换为784大小的连续数组。

flatten = nn.Flatten()
flat_image = flatten(input_image)
print(flat_image.shape)

(3, 784)

nn.Dense

nn.Dense为全连接层,其使用权重和偏差对输入进行线性变换。

layer1 = nn.Dense(in_channels=28*28, out_channels=20)
hidden1 = layer1(flat_image)
print(hidden1.shape)

(3, 20)

nn.ReLU

nn.ReLU层给网络中加入非线性的激活函数,帮助神经网络学习各种复杂的特征。

print(f"Before ReLU: {hidden1}\n\n")
hidden1 = nn.ReLU()(hidden1)
print(f"After ReLU: {hidden1}")

Before ReLU: [[-0.36493447 -0.4552533 -0.77463824 -0.00672612 -0.15985794 0.09474451
-0.18840352 -1.3064846 0.08662632 -0.2567572 0.67827773 0.6171774
-0.26879543 1.2957768 0.16914369 0.6931136 0.4204718 1.1266994
-1.0548934 -1.1758693 ]
[-0.36493447 -0.4552533 -0.77463824 -0.00672612 -0.15985794 0.09474451
-0.18840352 -1.3064846 0.08662632 -0.2567572 0.67827773 0.6171774
-0.26879543 1.2957768 0.16914369 0.6931136 0.4204718 1.1266994
-1.0548934 -1.1758693 ]
[-0.36493447 -0.4552533 -0.77463824 -0.00672612 -0.15985794 0.09474451
-0.18840352 -1.3064846 0.08662632 -0.2567572 0.67827773 0.6171774
-0.26879543 1.2957768 0.16914369 0.6931136 0.4204718 1.1266994
-1.0548934 -1.1758693 ]]

After ReLU: [[0. 0. 0. 0. 0.
0.09474451
0. 0. 0.08662632 0. 0.67827773 0.6171774
0. 1.2957768 0.16914369 0.6931136 0.4204718 1.1266994
0. 0. ] [0. 0. 0. 0. 0. 0.09474451
0. 0. 0.08662632 0. 0.67827773 0.6171774
0. 1.2957768 0.16914369 0.6931136 0.4204718 1.1266994
0. 0. ] [0. 0. 0. 0. 0. 0.09474451
0. 0. 0.08662632 0. 0.67827773 0.6171774
0. 1.2957768 0.16914369 0.6931136 0.4204718 1.1266994
0. 0. ]]

nn.SequentialCell

nn.SequentialCell是一个有序的Cell容器。输入Tensor将按照定义的顺序通过所有Cell。我们可以使用SequentialCell来快速组合构造一个神经网络模型。

seq_modules = nn.SequentialCell(
    flatten,
    layer1,
    nn.ReLU(),
    nn.Dense(20, 10)
)
​
logits = seq_modules(input_image)
print(logits.shape)

(3, 10)

nn.Softmax

最后使用nn.Softmax将神经网络最后一个全连接层返回的logits的值缩放为[0, 1],表示每个类别的预测概率。axis指定的维度数值和为1。

softmax = nn.Softmax(axis=1)
pred_probab = softmax(logits)

模型参数

网络内部神经网络层具有权重参数和偏置参数(如nn.Dense),这些参数会在训练过程中不断进行优化,可通过 model.parameters_and_names() 来获取参数名及对应的参数详情。

print(f"Model structure: {model}\n\n")for name, param in model.parameters_and_names():
    print(f"Layer: {name}\nSize: {param.shape}\nValues : {param[:2]} \n")

Model structure: Network< (flatten): Flatten<>
(dense_relu_sequential): SequentialCell<
(0): Dense<input_channels=784, output_channels=512, has_bias=True>
(1): ReLU<>
(2): Dense<input_channels=512, output_channels=512, has_bias=True>
(3): ReLU<>
(4): Dense<input_channels=512, output_channels=10, has_bias=True>
>

Layer: dense_relu_sequential.0.weight Size: (512, 784) Values :
[[-0.00582778 -0.00821672 -0.00799145 … 0.02037192 -0.00309562
0.01134245] [ 0.00445698 -0.00882429 -0.00682783 … -0.00389521 0.01761077
0.00142994]]

Layer: dense_relu_sequential.0.bias Size: (512,) Values : [0. 0.]

Layer: dense_relu_sequential.2.weight Size: (512, 512) Values : [[
0.00347358 0.01583406 -0.00516257 … -0.00064939 -0.01901384 -0.01334631] [-0.00116769 0.00595576 -0.00311375 … -0.01010875 0.01194435 -0.0164916 ]]

Layer: dense_relu_sequential.2.bias Size: (512,) Values : [0. 0.]

Layer: dense_relu_sequential.4.weight Size: (10, 512) Values :
[[-0.00807344 -0.02569235 0.01409243 … -0.00464091 0.00249552
0.01139598] [ 0.00450872 0.00336133 -0.00022378 … -0.0003142 0.00181641
0.02071469]]

Layer: dense_relu_sequential.4.bias Size: (10,) Values : [0. 0.]

更多内置神经网络层详见mindspore.nn API。

在这里插入图片描述

通过本次学习,我掌握了如何使用MindSpore构建和训练神经网络模型。了解了MindSpore中Cell类的基本原理,以及如何通过继承和重载方法来实现自定义的神经网络层。通过实例化和组合不同的子Cell,构建了一个用于MNIST数据集分类的多层感知器模型,并通过Flatten、Dense、ReLU等层进行操作。熟悉了SequentialCell的使用,简化了模型的构建过程,同时通过Softmax层实现了分类概率的计算。整体学习过程提高了我对MindSpore深度学习框架的理解和应用能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值