R语言变量同质性分析(检验样本的方差同质性(同方差,方差齐性)):数据偏离正态分布使用Levene’s test

本文介绍了R语言中用于检验样本方差同质性的方法,重点讨论了在数据偏离正态分布时,使用Levene's test的优势。通过样例数据,展示了Bartlett、Levene和Fligner-Killeen三种检验的使用,并解释了为什么在数据非正态时,Levene's test更具鲁棒性。
摘要由CSDN通过智能技术生成

R语言变量同质性分析(检验样本的方差同质性(同方差,方差齐性)):数据偏离正态分布使用Levene’s test

目录

R语言变量同质性分析(检验样本的方差同质性(同方差,方差齐性)):数据偏离正态分布使用Levene’s test

问题

方案

样例数据

Bartlett 检验

Levene 检验

Fligner-Killeen 检验


问题

(精确)检验样本的方差同质性(同方差,方差齐性)。许多统计检验假设总体同方差

方案

有许多检验方

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

statistics.insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值