著名的快速排序算法里有一个经典的划分过程:我们通常采用某种方法取一个元素作为主元,通过交换,把比主元小的元素放到它的左边,比主元大的元素放到它的右边。 给定划分后的 N 个互不相同的正整数的排列,请问有多少个元素可能是划分前选取的主元?
例如给定 N=5, 排列是1、3、2、4、5。则:
- 1 的左边没有元素,右边的元素都比它大,所以它可能是主元;
- 尽管 3 的左边元素都比它小,但其右边的 2 比它小,所以它不能是主元;
- 尽管 2 的右边元素都比它大,但其左边的 3 比它大,所以它不能是主元;
- 类似原因,4 和 5 都可能是主元。
因此,有 3 个元素可能是主元。
输入格式:
输入在第 1 行中给出一个正整数 N(≤105); 第 2 行是空格分隔的 N 个不同的正整数,每个数不超过 109。
输出格式:
在第 1 行中输出有可能是主元的元素个数;在第 2 行中按递增顺序输出这些元素,其间以 1 个空格分隔,行首尾不得有多余空格。
思路:从题目可以看出主元是从左到右的最大值,从右到左的最小值.
如果针对每一个主元都遍历一遍那么O(n^2)的时间复杂度+python的效率必然是要超时的.
想想我们需要的信息是什么?
最值!最值是否需要每次都遍历才能得出呢?不需要.只需要遍历一遍就能得出最大值和最小值.
所以我们先遍历一次得出从左到右的每个位置的最大值和从右到左的每个位置的最小值.存储下来,典型的空间换时间,
再进行一次遍历,每次都判断当前值是否满足条件中的最大值和最小值即可.时间复杂度为2*O(n).
注意处理下没有元素满足条件的额外情况.
n = int(input())
nums = list(map(int,input().split()))
maxlist,minlist = [],[]
for i in range(n):
if not maxlist:
maxlist.append(nums[i])
minlist.append(nums[n-i-1])
else:
maxlist.append(max(nums[i],maxlist[-1]))
minlist.append(min(nums[n-i-1],minlist[-1]))
ans = []
for j in range(n):
if nums[j] == maxlist[j] and nums[j] == minlist[n-j-1]:
ans.append(nums[j])
if ans:
print(len(ans))
for each in ans[:-1]:
print(each,end = " ")
print(ans[-1])
else:
print(0)
print()
本文介绍了一种高效算法,用于确定快速排序过程中可能作为主元的元素数量及具体数值。通过对给定序列的一次遍历,预先计算出从左到右的最大值和从右到左的最小值,进而找出符合条件的主元。


被折叠的 条评论
为什么被折叠?



