- 博客(184)
- 收藏
- 关注
原创 金融科技中的跨境支付、Open API、数字产品服务开发、变革管理
跨境支付的关键挑战,涵盖操作效率、资金流动性、交易安全性、监管合规性四个方面。这些问题相互交织,导致跨境支付往往比国内支付更慢、更贵、风险更高,也是金融科技(比如区块链、数字货币 )试图解决的核心痛点~:即应用程序编程接口,是一组规范化的指令(a set of formalized commands ),让不同软件应用之间能够互相通信(allow communication between software applications )。
2025-07-27 21:31:04
625
原创 金融科技中的远程开户、海外个人客户在线开户、企业客户远程开户
企业远程开户,因为是“授权代表代办”,所以尽职调查更复杂:既要验企业本身,也要验代办人、受益人,还要搞清楚企业的结构和业务。目的是防范企业被用于洗钱、恐怖融资等风险,确保业务关系合规~企业远程入职的尽职调查,授权机构有灵活手段:找第三方、公证认证、视频会议等。而且不强制“企业代表必须现场”,只要风险匹配、流程合规,远程手段也能完成CDD,方便企业开户,同时控风险~
2025-07-27 16:25:10
851
原创 金融科技里的信用评分、指纹识别、面部识别、虹膜识别
信用评分是基于模型的估算,预测“借款人未来出现不良行为的概率”(比如还不上钱、违约 )。生物识别指测量人体物理特征皮肤或皮下血管网络的模式基因编码的模式面部特征(比如眼、鼻、嘴之间的距离等面部外观 )行为特征(比如步态 gait )行为生物识别的过程是:采集行为生物特征样本时,需要主体主动参与(requires subjects to be active ),得在传感器前做特定动作 / 行为这类特征不是天生的生理特征,而是后天学习、逐渐形成的行为模式。
2025-07-27 13:40:42
498
原创 金融科技中的虚拟助手
模数 / 数模转换器(A/D & D/A Converters)作用:A/D(模拟转数字 )和 D/A(数字转模拟 )转换器,是音频信号模拟世界与计算机数字世界之间的输入、输出接口。A/D 模块细节:A/D 模块把麦克风采集的音频(尤其是语音 ),转化为计算机能处理的数字序列形式,且尽可能减少精度损失 ,实现模拟语音信号到数字信号的转换,让计算机可 “读懂” 语音。自动语音识别(ASR - Automatic Speech Recognition)
2025-07-27 09:35:48
575
原创 香港本地和国际金融科技应用
条形码/二维码(Barcode/QR Code)的线下即时支付解决方案金融科技生态的颠覆性影响:金融科技生态系统颠覆了金融服务行业的流程、系统、服务渠道、营销渠道、产品、服务和定价。即金融科技改变了金融行业原本的运作模式,从业务流程到产品设计、定价等多个环节都被重塑。理解颠覆性事件的价值:了解行业中关键的颠覆性事件,有助于银行的决策者规划正确的发展战略。因为知晓金融科技带来的变革事件,银行管理者能据此制定适配行业变化、利于自身发展的策略。
2025-07-26 21:36:52
1091
原创 使用langgraph 构建RAG 智能问答代理
创建一个名为 tools 的列表,里面包含一个你自定义的工具函数 retriever_tool。retriever_tool 是你前面定义过并用 @tool 装饰过的检索工具,它可以从 PDF 文档中找出与用户问题相关的段落。把你定义的工具 tools 绑定到语言模型对象 llm 上,使得它在生成回答时可以调用这些工具。这使得模型可以在需要外部知识时 自动调用 retriever_tool 来辅助回答。llm 是你使用的 ChatGoogleGenerativeAI(…)(Gemini 模型)对象。
2025-07-12 21:47:25
691
原创 使用Gemini, LangChain, Gradio打造一个书籍推荐系统 (第五部分)
使用 LangChain 的 TextLoader 加载名为 “new_tagged_description.txt” 的文本文件,并将其转换成一个 Document 对象(或列表),每个 Document 通常有 .page_content 和 .metadata。”,这行代码提取出 ISBN。从图书数据中提取所有唯一的 simple_categories(如 Fiction、Nonfiction 等),加上默认选项 “All”,作为类别选择器的选项。
2025-06-10 01:53:14
700
原创 使用Gemini, LangChain, Gradio打造一个书籍推荐系统 (第四部分)
遍历我们定义好的情绪标签(emotion_labels),把每种情绪的最大分数添加到 emotion_scores 字典的相应列表中。lambda x: x[“label”] 是一个 匿名函数(lambda表达式),表示“取 x(每个字典)的 ‘label’ 值”。定义了一个函数,输入参数是 predictions(通常是一个列表,包含多段文本的情绪预测结果,每段是多个情绪及其分数的列表)。sorted() 是 Python 内置的 排序函数,用于对列表中的元素排序,返回一个新的排序后的列表。
2025-05-31 10:00:19
625
原创 使用Gemini, LangChain, Gradio打造一个书籍推荐系统 (第三部分)
value(简化类别):你希望把原始类别重新归类到更简单、更高层次的分类标签,例如 “Fiction”、“Nonfiction” 或 “Children’s Fiction”。如果 books[“simple_categories”] 是缺失值 (NaN),就用 books[“predicted_categories”] 填补。predicted_cats 会是一个长度为 300 的列表,存放模型预测的标签结果(可能是 “Fiction” 或 “Nonfiction”)。
2025-05-27 23:18:23
881
原创 使用Gemini, LangChain, Gradio打造一个书籍推荐系统 (第二部分)
导入了一些用于构建 文本嵌入式向量检索系统(Embedding-based Retrieval System) 的模块,结合了 LangChain、Chroma 向量数据库、以及 Google Vertex AI 的文本嵌入模型。从 LangChain 社区库 导入 TextLoader,用于从 .txt 文件中加载纯文本数据。功能:将本地文本文件加载为 LangChain 的 Document 对象导入 CharacterTextSplitter,是 LangChain 提供的一种 文本分割器。
2025-05-23 22:26:54
1073
原创 使用Gemini, LangChain, Gradio打造一个书籍推荐系统 (第一部分)
从 book_missing 数据集中筛选出简介(description)中包含 不少于 25 个单词 的图书记录,并保存到 book_missing_25_words 中。对 book_missing_25_words 数据框进行清理(删除一些不再需要的列),然后将结果保存为一个新的 CSV 文件 books_cleaned_new.csv。计算每本书的简介(description)中包含了多少个单词,并将结果保存到一个新列 words_in_description 中。
2025-05-21 22:11:08
1110
原创 使用FastAPI和google gemini打造一个多语言翻译网站
1. 一个基于 FastAPI 的翻译服务 API,主要功能包括提交翻译请求、查询翻译状态和结果工作流程main.py2. 验证从前端(如 Web 或移动端)传入的数据是否符合预期格式schemas.py3. 配置数据库连接database.py4. 定义三个SQLAlchemy数据库模型,并创建了对应的数据库表结构。这些模型用于管理一个翻译系统的数据存储。models.py5. 使用Google的Gemini AI模型进行文本翻译,并将结果存储到数据库中utils.py6. 实现一个多
2025-03-31 17:10:49
461
原创 使用React和google gemini api 打造一个google gemini应用
【代码】使用React和google gemini api 打造一个google gemini应用。
2025-03-18 10:34:28
382
原创 量化自学 - 金融理论与python - Net Present Value 净现值
净现值(Net Present Value,NPV)是金融理论中用于评估投资项目价值的指标。其核心思想是将未来现金流按一定贴现率折算为当前价值,并减去初始投资成本。若NPV为正,表明项目预期收益高于成本,具有投资价值;反之则可能不值得投资。
2025-02-19 23:28:05
549
原创 HackerRank - Box It!
默认构造函数、参数化构造函数、拷贝构造函数、防止乘法结果溢出、重载小于运算符、实现友元函数、重载输出流运算符
2025-02-13 18:07:29
225
原创 HackerRank C++面试,中等难度题目 - Attribute Parser
【代码】HackerRank C++面试,中等难度题目 - Attribute Parser。
2025-02-12 16:05:29
667
原创 C++如何处理不确定长度的数组
在C++中,你可以使用std::vector来处理不确定长度的数组。std::vector是一个动态数组,可以根据需要自动调整大小。
2025-02-12 11:56:25
359
原创 kaggle比赛入门 - Spaceship Titanic (第五部分)
我们可以看到VIP特征的数据分布极度不平衡,我们可以直接用False填补缺失值。
2025-02-08 15:18:12
1114
原创 kaggle比赛入门 - Spaceship Titanic (第三部分)
大多数 Group(乘客组)只包含 一个姓氏的家庭。因此,我们可以 使用该组内的多数姓氏 来填充缺失的 Surname(姓氏)。我们可以看到同一个姓氏的乘客来自同一颗母星。剩余的乘客都是去往同一个目的地。
2025-02-07 13:29:06
750
原创 kaggle比赛入门 - Spaceship Titanic (第二部分)
我们可以看到cabin number以每300个数字形成一个区间,每个区间形成不同特征,我们可以把这些区间定义为一个新的特征。观察不同甲板的乘客分布,分析哪个甲板的乘客更容易被传送。T只有5个sample,属于outlier。大约24%的乘客有至少一个缺失值。
2025-02-07 11:25:06
1086
原创 C++数据类型 - 实型 float, double, long double
【代码】C++数据类型 - 实型 float, double, long double。
2025-02-03 16:28:11
115
原创 kaggle比赛入门 - House Prices - Advanced Regression Techniques(第四部分)
models = {},这段代码的目的是对数据集进行训练/测试集划分,并定义多种模型及其超参数网格,为后续的模型训练和优化(如超参数调优)做准备。1. 数据集划分将数据集划分为训练集 (training set)和测试集 (testing set)。参数解释:预处理后的特征矩阵(特征工程和降维后的结果)。y:目标变量(对数变换后的房价)。:将数据的20%用作测试集,其余80%用作训练集。:固定随机种子,以确保结果可复现。输出X_train_fe和y_train_fe:训练集特征和目标变量。
2025-01-28 11:43:26
850
原创 kaggle比赛入门 - House Prices - Advanced Regression Techniques(第三部分)
这段代码定义了两个数据预处理流水线(pipelines),分别针对数值型数据和类别型数据进行特定的转换操作。以下是逐步解释:对数值型和类别型特征进行预处理,以便后续建模使用。这是实现机器学习流水线的重要步骤。:步骤解析:::步骤解析:::数值型特征流水线:类别型特征流水线:通过这种模块化的流水线设计,数据预处理变得更加清晰、灵活且易于扩展。这段代码的目的是从 DataFrame 中区分出类别型列和数值型列,以便对它们进行分别处理。以下是详细的解释::解释数据类型::结果:::结
2025-01-27 20:37:38
776
原创 kaggle比赛入门 - House Prices - Advanced Regression Techniques(第二部分)
设置文本格式为美元金额,例如$200,000。将柱子顶部的文本显示在柱子外部。
2025-01-26 18:06:14
1067
原创 kaggle比赛入门 - House Prices - Advanced Regression Techniques(第一部分)
筛选出所有数值类型的列。对这些数值列进行统计汇总,提供常见的统计信息,便于分析数据的分布和特征。:返回一个布尔数据框,标记缺失值的位置。:检查每行是否包含缺失值,返回布尔值序列。df[...]:通过布尔索引筛选出包含缺失值的行。这段代码可以帮助快速识别数据框中有哪些行包含缺失值,便于后续处理(例如填充、删除等)。代码基于拟合的正态分布参数,生成了一条平滑的正态分布曲线。曲线可与直方图叠加,用于比较数据分布与理想正态分布的差异。图表的绿色曲线直观显示正态分布模型。fig.show()
2025-01-25 15:34:33
1126
原创 Excel 面试 05 查找函数组合 INDEX-MATCH
是一个高效、灵活的查找组合,适用于需要精确查找、左侧查找、多条件匹配或更高性能的场景。尽管设置公式稍微复杂,但其强大的功能使其成为 Excel 数据处理的最佳工具之一。是一种强大的函数组合,用于查找和返回表格中的值。,它更灵活且高效,尤其在需要双向查找或处理动态列时表现出色。:使用 MATCH 确定位置,再用 INDEX 返回对应值。确认数组公式(适用于旧版 Excel)。:查找 “张三” 在 “英语” 的分数。:返回查找值在数组中的位置。:返回数组中指定位置的值。:查找 “葡萄” 的库存。
2025-01-20 17:15:45
3287
原创 Kaggle比赛入门 - Titanic - Machine Learning from Disaster
KNN的性能受数据特征尺度和距离度量方式的影响。较小的值表示较远的点有影响,较大的值则表示较近的点主导。在机器学习模型(如逻辑回归、SVM、KNN等)中,标准化可加快收敛速度,改善模型性能。KNN的时间复杂度较高,尤其在大数据集和高维数据中,因为需要计算所有点之间的距离。对于大型数据集,训练时间可能较长,因为SVM的时间复杂度与样本数量的平方成正比。假设Ticket是唯一标识乘客的字段,统计它的数量代表每组的乘客人数。进行对数变换,以减少数据的偏态(skewness),让分布更接近正态分布。
2025-01-20 13:30:52
1001
原创 如何在react的create-react-app中配置@别名路径
项目背景:在业务开发过程中文件夹的嵌套层级可能会比较深,通过传统的路径选择会比较麻烦也容易出错,设置路径别名可以简化这个过程。cracoscripts命令。
2025-01-19 20:56:39
266
原创 React项目中利用json-server实现数据Mock
建立一个server文件夹,建立一个data.json文件。json-server实现数据Mock。
2025-01-08 14:40:33
300
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人