//编程将一个整数分解成一个质因数的连乘积,并打印在屏幕上
//***本题的难点是既要找出质因数,又要保证其连乘为该数
//***需要两个循环,外循环与内循环
/*每个合数 都可以写成几个 质数 相乘的形式,这几个质数就都叫做这个合数的质 因数 。 如果一个质数是某个数的因数,那么就说这个质数是这个数的质因数。而这个因数一定是一个质数。
质因数 (或 质因子 )在数论里是指能整除给定正整数的质数。 两个没有共同质因子的正整数称为 互质 。因 为1没有质因子, 1 与任何正整数(包括1本身)都是互质 。 正整数的 因数分解 可将正整数表示为一连串的质因子相乘,质因子如重复可以 指数 表示。根据 算术基本定理 , 任何正整数皆有独一无二的质因子分解式。 只有一个质因子的正整数为质数。就是一个数的约数,并且是质数,比如8=2×2×2,2就是8的质因数。12=2×2×3,2和3就是12的质因数。把一个式子以12=2×2×3的形式表示,叫做分解质因数。16=2×2×2×2,2就是16的质因数, 把一个 合数 写成几个质数相乘的形式表示,这也是 分解 质因数 。分解质因数的方法是先用一个合数的最小质因数去除这个合数,得出的数若是个质数,就写成这个合数相乘形式;若是一个合数就继续按原来的方法,直至最后是一个质数 。分解质因数的有两种表示方法,除了大家最常用知道的“短除分解法”之外,还有一种方法就是“塔形分解法”。分解质因数对解决一些自然数和乘积的问题有很大的帮助,同时又为求最大公约数和最小公倍数做了重要的铺垫。
计算方法