目录
一、hive是什么
HIve是建立在Hadoop上的数据仓库基础架构。
二、hive的概念及架构
1、概念
它提供了一系列的工具,可以用来进行数据提取转化加载(ETL ),这是一种可以存储、查询和分析存储在 Hadoop 中的大规模数据的机制。Hive 定义了简单的类 SQL 查询语言,称为 HQL ,它允许熟悉 SQL 的用户查询数据。同时,这个语言也允许熟悉 MapReduce 开发者的开发自定义的 mapper 和 reducer 来处理内建的 mapper 和 reducer 无法完成的复杂的分析工作。
数据仓库,英文名称为Data Warehouse,可简写为DW或DWH。数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它出于分析性报告和决策支持目的而创建。为需要业务智能的企业,提供指导业务流程改进、监视时间、成本、质量以及控制。
Hive是SQL解析引擎,它将SQL语句转译成M/R Job然后在Hadoop执行。
Hive的表其实就是HDFS的目录,按表名把文件夹分开。如果是分区表,则分区值是子文件夹,可以直接在M/R Job里使用这些数据。
Hive相当于hadoop的客户端工具,部署时不一定放在集群管理节点中,可以放在某个节点上
2、架构
1)hive与传统数据库比较
| 查询语言 | HiveQL | SQL |
| 数据存储位置 | HDFS | Raw Device or 本地FS |
| 数据格式 | 用户定义 | 系统决定 |
| 数据更新 | 不支持(1.x以后版本支持) (insert into) | 支持(insert into) |
| 索引 | 新版本有,但弱 | 有 |
| 执行 | MapReduce | Executor |
| 执行延迟 | 高 | 低 |
| 可扩展性 | 高 | 低 |
| 数据规模 | 大 | 小 |
1. 查询语言。类 SQL 的查询语言 HQL。熟悉 SQL 开发的开发者可以很方便的使用 Hive 进行开发。
2. 数据存储位置。所有 Hive 的数据都是存储在 HDFS 中的。而数据库则可以将数据保存在块设备或者本地文件系统中。
3. 数据格式。Hive 中没有定义专门的数据格式。而在数据库中,所有数据都会按照一定的组织存储,因此,数据库加载数据的过程会比较耗时。
4. 数据更新。Hive 对数据的改写和添加比较弱化,0.14版本之后支持,需要启动配置项。而数据库中的数据通常是需要经常进行修改的。
5. 索引。Hive 在加载数据的过程中不会对数据进行任何处理。因此访问延迟较高。数据库可以有很高的效率,较低的延迟。由于数据的访问延迟较高,决定了 Hive 不适合在线数据查询。
6. 执行计算。Hive 中执行是通过 MapReduce 来实现的而数据库通常有自己的执行引擎。
7. 数据规模。由于 Hive 建立在集群上并可以利用 MapReduce 进行并行计算,因此可以支持很大规模的数据;对应的,数据库可以支持的数据规模较小。
2)hive的储存格式
Hive的数据存储基于Hadoop HDFS。 Hive没有专门的数据文件格式,常见的有以下几种。
TextFile(常用)
TEXTFILE 即正常的文本格式,是Hive默认文件存储格式,因为大多数情况下源数据文件都是以text文件格式保存(便于查看验数和防止乱码)。此种格式的表文件在HDFS上是明文,可用hadoop fs -cat命令查看,从HDFS上get下来后也可以直接读取。 TEXTFILE 存储文件默认每一行就是一条记录,可以指定任意的分隔符进行字段间的分割。但这个格式无压缩,需要的存储空间很大。虽然可结合Gzip、Bzip2、Snappy等使用,使用这种方式,Hive不会对数据进行切分,从而无法对数据进行并行操作。 一般只有与其他系统由数据交互的接口表采用TEXTFILE 格式,其他事实表和维度表都不建议使用。
SEQUENCEFILE
SequenceFile是Hadoop API 提供的一种二进制文件,它将数据以<key,value>的形式序列化到文件中。这种二进制文件内部使用Hadoop 的标准的Writable 接口实现序列化和反序列化。它与Hadoop API中的MapFile 是互相兼容的。Hive 中的SequenceFile 继承自Hadoop API 的SequenceFile,不过它的key为空,使用value 存放实际的值, 这样是为了避免MR 在运行map 阶段的排序过程。 SequenceFile支持三种压缩选择:NONE, RECORD, BLOCK。 Record压缩率低,一般建议使用BLOCK压缩。 SequenceFile最重要的优点就是Hadoop原生支持较好,有API,但除此之外平平无奇,实际生产中不会使用。
AVRO
Avro是一种用于支持数据密集型的二进制文件格式。它的文件格式更为紧凑,若要读取大量数据时,Avro能够提供更好的序列化和反序列化性能。并且Avro数据文件天生是带Schema定义的,所以它不需要开发者在API 级别实现自己的Writable对象。Avro提供的机制使动态语言可以方便地处理Avro数据。最近多个Hadoop 子项目都支持Avro 数据格式,如Pig 、Hive、Flume、Sqoop和Hcatalog。
RCFile:
Record Columnar的缩写。是Hadoop中第一个列文件格式。能够很好的压缩和快速的查询性能。通常写操作比较慢,比非列形式的文件格式需要更多的内存空间和计算量。 RCFile是一种行列存储相结合的存储方式。首先,其将数据按行分块,保证同一个record在一个块上,避免读一个记录需要读取多个block。其次,块数据列式存储,有利于数据压缩和快速的列存取。
ORCFile:(常用)
Hive从0.11版本开始提供了ORC的文件格式,ORC文件不仅仅是一种列式文件存储格式,最重要的是有着很高的压缩比,并且对于MapReduce来说是可切分(Split)的。因此,在Hive中使用ORC作为表的文件存储格式,不仅可以很大程度的节省HDFS存储资源,而且对数据的查询和处理性能有着非常大的提升,因为ORC较其他文件格式压缩比高,查询任务的输入数据量减少,使用的Task也就减少了。ORC能很大程度的节省存储和计算资源,但它在读写时候需要消耗额外的CPU资源来压缩和解压缩,当然这部分的CPU消耗是非常少的
Parquet:
通常我们使用关系数据库存储结构化数据,而关系数据库中使用数据模型都是扁平式的,遇到诸如List、Map和自定义Struct的时候就需要用户在应用层解析。但是在大数据环境下,通常数据的来源是服务端的埋点数据,很可能需要把程序中的某些对象内容作为输出的一部分,而每一个对象都可能是嵌套的,所以如果能够原生的支持这种数据,这样在查询的时候就不需要额外的解析便能获得想要的结果。 Parquet的灵感来自于2010年Google发表的Dremel论文,文中介绍了一种支持嵌套结构的存储格式,并且使用了列式存储的方式提升查询性能。Parquet仅仅是一种存储格式,它是语言、平台无关的,并且不需要和任何一种数据处理框架绑定。这也是parquet相较于orc的仅有优势:支持嵌套结构。Parquet 没有太多其他可圈可点的地方,比如他不支持update操作(数据写成后不可修改),不支持ACID等.
三、hive的安装及使用
我们的版本约定:
JAVA_HOME=/usr/local/soft/jdk1.8.0_171
HADOOP_HOME=/usr/local/soft/hadoop-2.7.6
HIVE_HOME=/usr/local/soft/hive-1.2.1
前提:需要安装完Mysql和hadoop,需保证hadoop在启动状态
开始安装hive
1.解压
tar -zxvf /usr/local/moudle/apache-hive-1.2.1-bin.tar.gz -C /usr/local/soft/
2.修改目录名称为hive-1.2.1
cd /usr/local/soft/
mv apache-hive-1.2.1-bin/ hive-1.2.1
3.备份配置文件
cd /usr/local/soft/hive-1.2.1/conf
cp hive-env.sh.template hive-env.sh
hive-default.xml.template hive-site.xml
4.修改配置文件
vim hive.env.sh
新加三行配置(路径不同就更具实际情况来):
HADOOP_HOME=/usr/local/soft/hadoop-2.7.6
JAVA_HOME=/usr/local/soft/jdk1.8.0_171
HIVE_HOME=/usr/local/soft/hive-1.2.1
5.修改配置文件
vim hive-site.xml
修改对应的配置参数
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://master:3306/hive?characterEncoding=UTF-8&createDatabaseIfNotExist=true&useSSL=false</value>
</property>
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
</property>
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>root</value>
</property>
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>123456</value>
</property>
<property>
<name>hive.querylog.location</name>
<value>/usr/local/soft/hive-1.2.1/tmp</value>
</property>
<property>
<name>hive.exec.local.scratchdir</name>
<value>/usr/local/soft/hive-1.2.1/tmp</value>
</property>
<property>
<name>hive.downloaded.resources.dir</name>
<value>/usr/local/soft/hive-1.2.1/tmp</value>
</property>
6.复制mysql连接工具包到hive/lib
cd /usr/local/soft/hive-1.2.1
cp /usr/local/moudle/mysql-connector-java-5.1.49.jar /usr/local/soft/hive-1.2.1/lib/
7.删除hadoop中自带的jline-2.12.jar
位置在/usr/local/soft/hadoop-2.7.6/share/hadoop/yarn/lib/jline-2.12.jar
rm -rf /usr/local/soft/hadoop-2.7.6/share/hadoop/yarn/lib/jline-2.12.jar
8.把hive自带的jline-2.12.jar复制到hadoop中
hive中所在位置 /usr/local/soft/hive-1.2.1/lib/jline-2.12.jar
cp /usr/local/soft/hive-1.2.1/lib/jline-2.12.jar /usr/local/soft/hadoop-2.7.6/share/hadoop/yarn/lib/
9、添加环境变量、然后刷新
刷新配置:source /etc/profile
10.启动
hive
11、出现一下界面代表安装成功

12、测试hive
01、在hive中创建test1数据库
create database test1;
02、切换test1数据库:
use test1;
03、创建students表:
create table students(
id bigint comment '学生id',
name string comment '学生姓名',
age int comment '学生年龄',
gender string comment '学生性别',
clazz string comment '学生班级'
) comment '学生信息表'
ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';
以','结束的行格式分隔字段
[ row format delimited fields terminated by ‘,’ ]
04、创建score表:
create table score(
id bigint comment '学生id',
score_id bigint comment '科目id',
score int comment '学生成绩'
) comment '学生成绩表'
ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';
05、查看表信息:
desc students;
desc score;
四、hive的基本操作
常用的2个:CLI,JDBC/ODBC
CLI,即Shell命令行
JDBC/ODBC 是 Hive 的Java,与使用传统数据库JDBC的方式类似。
Hive 将元数据存储在数据库中(metastore),目前只支持 mysql、derby。
Hive 中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等;由解释器、编译器、优化器完成 HQL 查询语句从词法分析、语法分析、编译、优化以及查询计划(plan)的生成。生成的查询计划存储在 HDFS 中,并在随后由 MapReduce 调用执行。
Hive 的数据存储在 HDFS 中,大部分的查询由 MapReduce 完成(包含 * 的查询,比如 select * from table 不会生成 MapRedcue 任务)
Hive的metastore
metastore是hive元数据的集中存放地。
metastore默认使用内嵌的derby数据库作为存储引擎
Derby引擎的缺点:一次只能打开一个会话 使用MySQL作为外置存储引擎,多用户同时访问
metastore是hive元数据的集中存放地。 metastore默认使用内嵌的derby数据库作为存储引擎 Derby引擎的缺点:一次只能打开一个会话 使用MySQL作为外置存储引擎,多用户同时访问 元数据库详解见:查看mysql SDS表和TBLS表 https://blog.csdn.net/haozhugogo/article/details/73274832
2151

被折叠的 条评论
为什么被折叠?



