Hive异步求和

本文探讨了Hive中的数据倾斜问题,特别是在处理大量数据时,由于key分布不均导致的效率低下。针对这种情况,提出了通过添加随机数进行数据拆分和异步求和的解决方案,以提高处理效率。通过在大key值上加随机数并分组,然后进行聚合操作,可以显著改善任务执行时间。
摘要由CSDN通过智能技术生成

Hive调优-数据倾斜优化
问题抛出:
在这里插入图片描述

比如这里有100万的数据,99万的a,1万的b,最终到reduce阶段,相同的处理能力,一个处理99万,一个处理1万,最后处理的效率肯定是不相同的,会产生数据倾斜。

随机数怎么打:(也可以直接打在后面做字符串的拼接,然后再去掉)

在这里插入图片描述

思路
1,数据倾斜解决
看下key的分布
处理集中的key
原因
1)、key分布不均匀(实际上还是重复) 比如 group by 或者 distinct的时候
2)、数据重复,join 笛卡尔积 数据膨胀
表现
任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成。因为其处理的数据量和其他reduce差异过大。
单一reduce的记录数与平均记录数差异过大,通常可能达到3倍甚至更多。 最长时长远大于平均时长。
解决方案:
1,看下业务上,数据源头能否对数据进行过滤,比如 key为 null的,业务层面进行优化。
2,找到key重复的具体值,进行拆分,hash。异步求和。

解决
数据样式:
(99万的(84401,a),和其他数据)
在这里插入图片描述

直接求结果

select key,count(*) from skew group by key;

在这里插入图片描述

异步求和求结果
1、加随机数(只给数据比较大的加随机数,这里只给84401和null加随机数)分组聚合
2、在第一步的基础上进行分组

select key,count(*) as num,if(key=='84401' or key=='null',floor(rand()*6),0) as hashkey from skew
group by key,if(key=='84401' or key=='null',floor(rand()*6),0)

在这里插入图片描述

3、在上一步的基础上进行聚合

select key,sum(num) from
(
select key,count(*) as num,if(key=='84401' or key=='null',floor(rand()*6),0) as hashkey from skew
group by key,if(key=='84401' or key=='null',floor(rand()*6),0)
) as t group by key

在这里插入图片描述

可以看到,相比较原来,效率进行了提升

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值