论文精读《Prototypical Networks for Few-shot Learning》

        论文链接:https://arxiv.org/abs/1703.05175

        时间:NIPS2016

最近在读小样本方向的相关论文,想和大家分享一下解决小样本方法之“原型网络”。

背景介绍:

当数据较少时,分类算法在拟合过程中产生过拟合现象,导致分类结构与实际结果存在较大的误差。为了避免出现过拟合现象,作者提出了基于度量学习的元学习---原型网络

例子引入:

       对于分类任务, 倘若现在有一个包含四个分类的支持集S,其中包含猫咪、小狗、老虎、兔子的图像。还需要一个查询集Q

        每个图像通过一个嵌入函数f(x)将图像信息嵌入到一个度量空间中,对图像的信息进行编码。得到每个图像的编码后,对每个类别的所有样本进行均值操作,得到该类别的均值Ck。从查询集Q中选择一张图片x,测量x与C之间的距离,距离越近,就将x归为到哪一个类别。

通过以上的例子了解了原型网络的思想,简单概括为:将支持集的样本通过嵌入函数嵌入,对每个分类下的样本取均值得到该类别的原型c_k,测量查询集中的样本与原型c_k之间的距离,距离越近就将其归为哪一类。

对于zero-shot Learning而言,每个类别都带有元数据,该元数据包含对该类别的高级描述。zero-shot则是将每个类别的元数据v_k通过嵌入函数嵌入到共享空间后,将该元数据v_k作为类别的原型c_k=g\nu (v_k)

原理:

1.计算每个类别的原型c_k

                        

 其中,嵌入函数 f_\phi : R^D \rightarrow R^MS_k表示每个类别的样本数

2.通过利用欧几里得计算查询集中的样本与原型之间的距离后,并对其进行归一化操作,计算样本x属于某个类别的概率p_\phi \left ( y=k|x \right ),这里通过softmax获得分类概率分布计算:

 3. 目标损失函数J\left ( \phi \right )

                                                J(\phi)=-logP_\phi (y=k|x)

 通过梯度下降法使目标损失函数最小化,使其收敛后学习到一个好的\phi值。训练结束后映射函数能够将同一类样本映射到很近的距离。

本文的测试场景伪代码如下:

                

实验结果:

       1.Omniglot数据集的few shot Learning

 Omniglot数据集参考 (三)Omniglot Dataset介绍_恒友成的博客-CSDN博客_omniglot数据集

上图:展示了在Omniglot数据集上对原型网络与其他的baseline、匹配网络的微调版本和非微调版本的匹配网络对比模型的分类精度。由以上数据显示,原型网络代表最先进的技术

        2.miniImageNet数据集的few shot Learning

     

 上图展示了基于欧几里得距离的原型网络、基于余弦距离的匹配网络和Baseline以及元学习LSTM在5-way下的分类精度,说明基于欧几里得距离的原型网络的分类精度高于其他方法

 上图展示:对于基于余弦距离和欧几里得距离的网络在5-way和20-way的训练在1-shot和5-shot镜头下的精度。左图,当原型网络和匹配网络在1-shot的镜头下是等同的。右图,随着类别(n-way)的增加,20-way比5-way获得更高的精度,提高分类难度,使模型更好的泛化,使模型在嵌入空间中做出更细粒度的决策。与此同时,欧几里得距离提升了余弦距离的性能。在原型网络中这种差异表现更明显。

3.zero-shot使用原型网络也表现出好的效果

 结论:

该文章展示了如何选择合适的距离度量以及如何修改episodic来提高性能,将原型网络应用到zero-shot学习中,在CUB-200取得了很好的效果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值