1RandomForestRegressor随机森林回归
class sklearn.ensemble.RandomForestRegressor (n_estimators=’warn’, criterion=’mse’, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False) 所有的参数,属性与接口,全部和随机森林分类器一致。仅有的不同就是回归树与分类树的不同,不纯度的指标, 参数Criterion不一致。
参数 criterion
回归树衡量分枝质量的指标,支持的标准有三种:
(1)输入"mse"使用均方误差mean squared error(MSE),父节点和叶子节点之间的均方误差的差额将被用来作为 特征选择的标准,这种方法通过使用叶子节点的均值来最小化L2损失
(2)输入“friedman_mse”使用费尔德曼均方误差,这种指标使用弗里德曼针对潜在分枝中的问题改进后的均方误差
(3)输入"mae"使用绝对平均误差MAE(mean absolute error),这种指标使用叶节点的中值来最小化L1损失
最重要的属性和接口,都与随机森林的

本文介绍了sklearn中的RandomForestRegressor,详细说明了回归树的准则,如MSE、Friedman MSE和MAE。重点讨论了随机森林回归的核心接口如fit、predict和score,并指出其没有predict_proba接口。此外,探讨了机器学习调参的基本思想,强调找到复杂度与泛化能力的平衡。最后,通过乳腺癌数据展示了随机森林的调参过程,包括调整max_depth、max_features和min_samples_split等参数。
最低0.47元/天 解锁文章
1509

被折叠的 条评论
为什么被折叠?



