算法学习系列(三十四):区间问题(贪心)

[编程]区间问题的贪心算法解析与实例,
文章讲述了如何运用贪心策略解决区间选点、最大不相交区间数量计算及区间分组问题,通过实例演示和代码展示了解决这些问题的方法。

引言

这个区间问题其实是个贪心问题,说起这个贪心问题,其实没有什么套路模板可言,就是多做题,这道题你做过类似的,那么你就可以 A C AC AC ,否则都是空谈。所以该篇主要还是以例题为主进行讲解。


一、区间选点

这个区间问题无外乎首先就是左端点排序、右端点排序、双关键字排序,至于什么时候怎么排序就得靠经验了。

思路:按照区间的右端点从小到大排序,接着访问每个区间,只要下一个区间左端点大于 e d ed ed ,则 r e s + + res++ res++ ,然后将当前区间右端点的值赋给 e d ed ed

题目描述:

给定 N 个闭区间 [ai,bi],请你在数轴上选择尽量少的点,使得每个区间内至少包含一个选出的点。

输出选择的点的最小数量。

位于区间端点上的点也算作区间内。

输入格式
第一行包含整数 N,表示区间数。

接下来 N 行,每行包含两个整数 ai,bi,表示一个区间的两个端点。

输出格式
输出一个整数,表示所需的点的最小数量。

数据范围
1≤N≤105,−109≤ai≤bi≤109
输入样例:
3
-1 1
2 4
3 5
输出样例:
2

示例代码:

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1e5+10;

int n;

struct Seg
{
    int l, r;
    bool operator<(const Seg& other)
    {
        return r < other.r;
    }
}segs[N];

int main()
{
    scanf("%d", &n);
    for(int i = 0; i < n; ++i) scanf("%d%d", &segs[i].l, &segs[i].r);
    
    sort(segs, segs+n);
    
    int res = 0, l = -2e9, r = -2e9;
    for(int i = 0; i < n; ++i)
    {
        if(segs[i].l > r)
        {
            res++;
            r = segs[i].r;
        }
    }
    
    printf("%d\n", res);
    
    return 0;
}

二、最大不相交区间数量

思路:这道题跟上道题是一模一样的,大家可以仔细思考下。

题目描述:

给定 N 个闭区间 [ai,bi],请你在数轴上选择若干区间,使得选中的区间之间互不相交(包括端点)。

输出可选取区间的最大数量。

输入格式
第一行包含整数 N,表示区间数。

接下来 N 行,每行包含两个整数 ai,bi,表示一个区间的两个端点。

输出格式
输出一个整数,表示可选取区间的最大数量。

数据范围
1≤N≤105,−109≤ai≤bi≤109
输入样例:
3
-1 1
2 4
3 5
输出样例:
2

示例代码:

#include <cstdio>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1e5+10;

int n;
struct Seg
{
    int l, r;
    bool operator<(const Seg& other)
    {
        return r < other.r;
    }
}segs[N];

int main()
{
    ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
    
    cin >> n;
    for(int i = 0; i < n; ++i) cin >> segs[i].l >> segs[i].r;
    
    sort(segs, segs+n);
    
    int res = 0, l = -2e9, r = -2e9;
    for(int i = 0; i < n; ++i)
    {
        if(segs[i].l > r)
        {
            res++;
            r = segs[i].r;
        }
    }
    
    cout << res << endl;
    
    return 0;
}

三、区间分组

这个区间问题无外乎首先就是左端点排序、右端点排序、双关键字排序,至于什么时候怎么排序就得靠经验了。

思路:按照左端点从小到大排序,遍历每一个区间,如果遇到当前区间的左端点小于等于在组中右端点最小的了,那么已经不能加入组中了,需要重新开辟一个组,否则把当前区间加到组中(还是右端点最小的组),更新右端点。这个组是拿小根堆抽象出来的,存的是这个组中的最右的点。

题目描述:

给定 N 个闭区间 [ai,bi],请你将这些区间分成若干组,使得每组内部的区间两两之间(包括端点)没有交集,并使得组数尽可能小。

输出最小组数。

输入格式
第一行包含整数 N,表示区间数。

接下来 N 行,每行包含两个整数 ai,bi,表示一个区间的两个端点。

输出格式
输出一个整数,表示最小组数。

数据范围
1≤N≤105,−109≤ai≤bi≤109
输入样例:
3
-1 1
2 4
3 5
输出样例:
2

示例代码:

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>

using namespace std;

const int N = 1e5+10;

int n;

struct Seg
{
    int l, r;
    bool operator<(const Seg& other)
    {
        return l < other.l;
    }
}segs[N];

int main()
{
    ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
    
    cin >> n;
    for(int i = 0; i < n; ++i) cin >> segs[i].l >> segs[i].r;
    
    sort(segs, segs+n);
    
    priority_queue<int, vector<int>, greater<int>> heap;
    for(int i = 0; i < n; ++i)
    {
        if(heap.empty() || heap.top() >= segs[i].l)
        {
            heap.push(segs[i].r);
        }
        else
        {
            heap.pop();
            heap.push(segs[i].r);
        }
    }
    
    cout << heap.size() << endl;
    
    return 0;
}

四、区间选点

思路:按左端点从小到大排序,遍历每个区间,每次取左端点 < = s t a r t <=start <=start 的区间中右端点最大的,然后用右端点更新 s t a r t start start

题目描述:

给定 N 个闭区间 [ai,bi] 以及一个线段区间 [s,t],请你选择尽量少的区间,将指定线段区间完全覆盖。

输出最少区间数,如果无法完全覆盖则输出 −1。

输入格式
第一行包含两个整数 s 和 t,表示给定线段区间的两个端点。

第二行包含整数 N,表示给定区间数。

接下来 N 行,每行包含两个整数 ai,bi,表示一个区间的两个端点。

输出格式
输出一个整数,表示所需最少区间数。

如果无解,则输出 −1。

数据范围
1≤N≤105,−109≤ai≤bi≤109,−109≤s≤t≤109
输入样例:
1 5
3
-1 3
2 4
3 5
输出样例:
2

示例代码:

#include <cstdio>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1e5+10;

int n;
int start, ed;

struct Seg
{
    int l, r;
    bool operator<(const Seg& other)
    {
        return l < other.l;
    }
}segs[N];

int main()
{
    ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
    
    cin >> start >> ed;
    cin >> n;
    for(int i = 0; i < n; ++i) cin >> segs[i].l >> segs[i].r;
    
    sort(segs, segs+n);
    
    int res = 0;
    bool flag = false;
    for(int i = 0; i < n; ++i)
    {
        int j = i, r = -2e9;
        while(j < n && segs[j].l <= start)
        {
            r = max(r, segs[j].r);
            j++;
        }
        
        if(r < start)
        {
            res = -1;
            break;
        }
        
        res++;
        if(r >= ed)
        {
            flag = true;
            break;
        }
        
        start = r;
        i = j - 1;
    }
    
    if(!flag) res = -1;
    cout << res << endl;
    
    return 0;
}
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lijiachang030718

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值