引言
这个区间问题其实是个贪心问题,说起这个贪心问题,其实没有什么套路模板可言,就是多做题,这道题你做过类似的,那么你就可以 A C AC AC ,否则都是空谈。所以该篇主要还是以例题为主进行讲解。
一、区间选点
这个区间问题无外乎首先就是左端点排序、右端点排序、双关键字排序,至于什么时候怎么排序就得靠经验了。
思路:按照区间的右端点从小到大排序,接着访问每个区间,只要下一个区间左端点大于
e
d
ed
ed ,则
r
e
s
+
+
res++
res++ ,然后将当前区间右端点的值赋给
e
d
ed
ed
题目描述:
给定 N 个闭区间 [ai,bi],请你在数轴上选择尽量少的点,使得每个区间内至少包含一个选出的点。
输出选择的点的最小数量。
位于区间端点上的点也算作区间内。
输入格式
第一行包含整数 N,表示区间数。
接下来 N 行,每行包含两个整数 ai,bi,表示一个区间的两个端点。
输出格式
输出一个整数,表示所需的点的最小数量。
数据范围
1≤N≤105,−109≤ai≤bi≤109
输入样例:
3
-1 1
2 4
3 5
输出样例:
2
示例代码:
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1e5+10;
int n;
struct Seg
{
int l, r;
bool operator<(const Seg& other)
{
return r < other.r;
}
}segs[N];
int main()
{
scanf("%d", &n);
for(int i = 0; i < n; ++i) scanf("%d%d", &segs[i].l, &segs[i].r);
sort(segs, segs+n);
int res = 0, l = -2e9, r = -2e9;
for(int i = 0; i < n; ++i)
{
if(segs[i].l > r)
{
res++;
r = segs[i].r;
}
}
printf("%d\n", res);
return 0;
}
二、最大不相交区间数量
思路:这道题跟上道题是一模一样的,大家可以仔细思考下。
题目描述:
给定 N 个闭区间 [ai,bi],请你在数轴上选择若干区间,使得选中的区间之间互不相交(包括端点)。
输出可选取区间的最大数量。
输入格式
第一行包含整数 N,表示区间数。
接下来 N 行,每行包含两个整数 ai,bi,表示一个区间的两个端点。
输出格式
输出一个整数,表示可选取区间的最大数量。
数据范围
1≤N≤105,−109≤ai≤bi≤109
输入样例:
3
-1 1
2 4
3 5
输出样例:
2
示例代码:
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1e5+10;
int n;
struct Seg
{
int l, r;
bool operator<(const Seg& other)
{
return r < other.r;
}
}segs[N];
int main()
{
ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
cin >> n;
for(int i = 0; i < n; ++i) cin >> segs[i].l >> segs[i].r;
sort(segs, segs+n);
int res = 0, l = -2e9, r = -2e9;
for(int i = 0; i < n; ++i)
{
if(segs[i].l > r)
{
res++;
r = segs[i].r;
}
}
cout << res << endl;
return 0;
}
三、区间分组
这个区间问题无外乎首先就是左端点排序、右端点排序、双关键字排序,至于什么时候怎么排序就得靠经验了。
思路:按照左端点从小到大排序,遍历每一个区间,如果遇到当前区间的左端点小于等于在组中右端点最小的了,那么已经不能加入组中了,需要重新开辟一个组,否则把当前区间加到组中(还是右端点最小的组),更新右端点。这个组是拿小根堆抽象出来的,存的是这个组中的最右的点。
题目描述:
给定 N 个闭区间 [ai,bi],请你将这些区间分成若干组,使得每组内部的区间两两之间(包括端点)没有交集,并使得组数尽可能小。
输出最小组数。
输入格式
第一行包含整数 N,表示区间数。
接下来 N 行,每行包含两个整数 ai,bi,表示一个区间的两个端点。
输出格式
输出一个整数,表示最小组数。
数据范围
1≤N≤105,−109≤ai≤bi≤109
输入样例:
3
-1 1
2 4
3 5
输出样例:
2
示例代码:
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
const int N = 1e5+10;
int n;
struct Seg
{
int l, r;
bool operator<(const Seg& other)
{
return l < other.l;
}
}segs[N];
int main()
{
ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
cin >> n;
for(int i = 0; i < n; ++i) cin >> segs[i].l >> segs[i].r;
sort(segs, segs+n);
priority_queue<int, vector<int>, greater<int>> heap;
for(int i = 0; i < n; ++i)
{
if(heap.empty() || heap.top() >= segs[i].l)
{
heap.push(segs[i].r);
}
else
{
heap.pop();
heap.push(segs[i].r);
}
}
cout << heap.size() << endl;
return 0;
}
四、区间选点
思路:按左端点从小到大排序,遍历每个区间,每次取左端点
<
=
s
t
a
r
t
<=start
<=start 的区间中右端点最大的,然后用右端点更新
s
t
a
r
t
start
start
题目描述:
给定 N 个闭区间 [ai,bi] 以及一个线段区间 [s,t],请你选择尽量少的区间,将指定线段区间完全覆盖。
输出最少区间数,如果无法完全覆盖则输出 −1。
输入格式
第一行包含两个整数 s 和 t,表示给定线段区间的两个端点。
第二行包含整数 N,表示给定区间数。
接下来 N 行,每行包含两个整数 ai,bi,表示一个区间的两个端点。
输出格式
输出一个整数,表示所需最少区间数。
如果无解,则输出 −1。
数据范围
1≤N≤105,−109≤ai≤bi≤109,−109≤s≤t≤109
输入样例:
1 5
3
-1 3
2 4
3 5
输出样例:
2
示例代码:
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1e5+10;
int n;
int start, ed;
struct Seg
{
int l, r;
bool operator<(const Seg& other)
{
return l < other.l;
}
}segs[N];
int main()
{
ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
cin >> start >> ed;
cin >> n;
for(int i = 0; i < n; ++i) cin >> segs[i].l >> segs[i].r;
sort(segs, segs+n);
int res = 0;
bool flag = false;
for(int i = 0; i < n; ++i)
{
int j = i, r = -2e9;
while(j < n && segs[j].l <= start)
{
r = max(r, segs[j].r);
j++;
}
if(r < start)
{
res = -1;
break;
}
res++;
if(r >= ed)
{
flag = true;
break;
}
start = r;
i = j - 1;
}
if(!flag) res = -1;
cout << res << endl;
return 0;
}
[编程]区间问题的贪心算法解析与实例,
文章讲述了如何运用贪心策略解决区间选点、最大不相交区间数量计算及区间分组问题,通过实例演示和代码展示了解决这些问题的方法。
32

被折叠的 条评论
为什么被折叠?



