快速选择的期望时间复杂度为O(n),最坏时间复杂度为O(n^2),当每次划分只划分为n-1个和1个时,由于划分时间复杂度为O(n),最坏时间复杂度为O(n^2)
void quickselect(vector<int>& arr, int l, int r, int k)
{
if (l >= r)return;
int i, j;
int x = rand() % (r - l + 1) + l; //随机选择主元与arr[r]互换
swap(arr[x], arr[r]);
for (i = l - 1, j = l; j < r; j++)
{
if (arr[j] <= arr[r])
{
i++;
swap(arr[i], arr[j]);
}
}
swap(arr[i + 1], arr[r]); //已经得到第i+2小的数
if (i + 1 > k - 1)quickselect(arr, l, i, k); //如果i+1大于k-1,向左排序,否则向右
if (i + 1 < k - 1)quickselect(arr, i + 2, r, k);
}
关于快速排序的细节可以参考这篇博文:
还有一些小题目适合初学者练手
https://leetcode.cn/problems/kth-largest-element-in-an-array/
本文深入探讨了快速选择算法,其期望时间复杂度为O(n),最坏情况为O(n^2)。通过随机选取主元来优化,避免最坏情况。详细介绍了算法实现,包括如何划分和递归调用。同时提供了LeetCode上的相关练习题以供读者实践。

被折叠的 条评论
为什么被折叠?



