【快速选择算法】O(n)时间复杂度

本文深入探讨了快速选择算法,其期望时间复杂度为O(n),最坏情况为O(n^2)。通过随机选取主元来优化,避免最坏情况。详细介绍了算法实现,包括如何划分和递归调用。同时提供了LeetCode上的相关练习题以供读者实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

快速选择的期望时间复杂度为O(n),最坏时间复杂度为O(n^2),当每次划分只划分为n-1个和1个时,由于划分时间复杂度为O(n),最坏时间复杂度为O(n^2)

​
void quickselect(vector<int>& arr, int l, int r, int k)
{
	if (l >= r)return;
	int i, j;
	int x = rand() % (r - l + 1) + l;    //随机选择主元与arr[r]互换
	swap(arr[x], arr[r]);
	for (i = l - 1, j = l; j < r; j++)
	{
		if (arr[j] <= arr[r])
		{
			i++;
			swap(arr[i], arr[j]);
		}
	}
	swap(arr[i + 1], arr[r]);        //已经得到第i+2小的数
	if (i + 1 > k - 1)quickselect(arr, l, i, k);    //如果i+1大于k-1,向左排序,否则向右
	if (i + 1 < k - 1)quickselect(arr, i + 2, r, k);
}

​

 关于快速排序的细节可以参考这篇博文:

点我呀

还有一些小题目适合初学者练手

最小的k个数

https://leetcode.cn/problems/kth-largest-element-in-an-array/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

装B且挨揍の

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值