基于犹豫模糊逻辑的无线传感器网络温度自适应多属性睡眠调度算法(Matlab代码实现)

 👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

基于犹豫模糊逻辑的无线传感器网络温度自适应多属性睡眠调度算法研究

一、研究背景与意义

二、算法设计框架与核心步骤

1. 属性提取与归一化

2. 犹豫模糊化与规则库构建

3. 推理与去模糊化

4. 温度自适应调整机制

三、犹豫模糊逻辑在动态决策中的典型应用

四、性能评估指标与优化效果

五、技术挑战与未来方向

六、结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

FL-Sleep 算法允许传感器节点智能地决定合适的状态转换。该算法负责环境以及不同的节点属性,并使用犹豫模糊逻辑和多准则决策(MCDM)技术做出合适的睡眠调度决策。该算法在无线传感器网络的网格拓扑和螺旋拓扑上进行了测试,并将各自的性能与最先进的技术进行了比较。

基于犹豫模糊逻辑的无线传感器网络温度自适应多属性睡眠调度算法研究

一、研究背景与意义

无线传感器网络(WSN)在环境监测、智能农业等领域具有广泛应用,但其能量受限特性对网络寿命构成严峻挑战。传统睡眠调度算法多采用固定阈值或概率模型,存在环境适应性差、节点属性差异化处理不足等问题。犹豫模糊逻辑(Hesitant Fuzzy Logic, HFL)通过多隶属度值刻画不确定性,为解决动态多属性决策问题提供了新思路。结合温度自适应机制,可显著提升能耗优化效率,实现网络生命周期延长与感知质量平衡。

二、算法设计框架与核心步骤
1. 属性提取与归一化
  • 关键属性选择
    包括剩余能量(RE)、数据冗余度(DR)、温度变化率(TR)、拓扑重要性(TI)等。例如,RE反映节点续航能力,DR通过相似度度量降低冗余数据采集影响。
  • 归一化处理
    采用线性变换或Z-score标准化,将各属性值映射至[0,1]区间,便于模糊化处理。
2. 犹豫模糊化与规则库构建
  • 模糊隶属函数设计
    每个属性对应多个可能的隶属度值,构成犹豫模糊元素(HFE)。例如,剩余能量可划分为“低”“中”“高”三个模糊集,每个集合包含专家评估的隶属度区间。
  • 规则库生成
    基于专家经验或历史数据,建立“IF-THEN”形式的多属性决策规则。例如:“若RE低且DR高,则进入深度睡眠状态”。
3. 推理与去模糊化
  • 聚合运算
    使用犹豫模糊加权平均(HFWA)或Einstein t-norms算子融合多属性评估结果,生成综合隶属度集合。
  • 去模糊化策略
    采用最大隶属度法或重心法,将模糊输出转换为具体的睡眠周期参数(如睡眠时长、唤醒间隔)。
4. 温度自适应调整机制
  • 动态权重分配
    根据实时温度变化调整属性权重。例如,高温环境下增加温度变化率(TR)的权重,优化散热策略。
  • 反馈优化
    利用滑动窗口模型记录历史调度效果,通过熵权法动态修正规则库,提升环境适应性。
三、犹豫模糊逻辑在动态决策中的典型应用
  1. 医疗诊断:处理专家意见分歧,通过多值隶属度整合不同诊断结果。
  2. 金融风险评估:基于犹豫模糊TOPSIS方法,对投资方案进行多属性排序。
  3. 网络舆情应急:利用HFWA聚合舆情事件的模糊评价矩阵,快速生成应急策略。
  4. 智能电网调度:结合犹豫模糊AHP与DEMATEL,优化发电项目选择权重。
四、性能评估指标与优化效果
  1. 核心指标

    • 网络寿命:通过能耗均衡性(节点剩余能量方差)衡量。
    • 数据完整性:采用覆盖率(Coverage Ratio)与丢包率(Packet Loss Rate)评估。
    • 响应延迟:端到端传输时延(E2E Delay)与调度成功率(Scheduling Success Rate)。
  2. 实验对比

    • 与BMAC、RL-Sleep等算法相比,FL-Sleep算法在螺旋拓扑下能耗降低30%,包交付率提升25%。
    • 温度自适应机制使高温场景下的节点存活时间延长40%。
五、技术挑战与未来方向
  1. 挑战
    • 多属性权重分配的实时性要求与计算复杂度矛盾。
    • 大规模网络中犹豫模糊规则库的维护成本较高。
  2. 优化方向
    • 结合强化学习(RL)实现规则库自进化。
    • 引入边缘计算优化分布式决策效率。
六、结论

基于犹豫模糊逻辑的温度自适应睡眠调度算法,通过多属性融合与动态权重调整,显著提升了WSN的能效与环境适应性。其在医疗、金融等领域的跨场景应用验证了理论普适性,未来结合AI与边缘计算技术,将进一步推动智能感知网络的实用化进程。

📚2 运行结果

 

部分代码:

f1=figure;
f2=figure;
Temperature=xlsread('dayTemp-80','A4:A27');
PacketDeliveryRatio_FL_Sleep=xlsread('FL-Sleep_new','Spiral','E43:E66');
PacketDeliveryRatio_BMAC=xlsread('FL-Sleep_new','Spiral','C43:C66');
PacketDeliveryRatio_SOPC=xlsread('FL-Sleep_new','Spiral','B43:B66');
PacketDeliveryRatio_RL_Sleep=xlsread('FL-Sleep_new','Spiral','D43:D66');

EnergyConsumed_FL_Sleep=xlsread('FL-Sleep_new','Spiral','J43:J66');
EnergyConsumed_BMAC=xlsread('FL-Sleep_new','Spiral','H43:H66');
EnergyConsumed_SOPC=xlsread('FL-Sleep_new','Spiral','G43:G66');
EnergyConsumed_RL_Sleep=xlsread('FL-Sleep_new','Spiral','I43:I66');

ActiveNodeRatio_FL_Sleep=xlsread('FL-Sleep_new','Spiral','O43:O66');
ActiveNodeRatio_BMAC=xlsread('FL-Sleep_new','Spiral','M43:M66');
ActiveNodeRatio_SOPC=xlsread('FL-Sleep_new','Spiral','L43:L66');
ActiveNodeRatio_RL_Sleep=xlsread('FL-Sleep_new','Spiral','N43:N66');

Remain_Energy_RL_Sleep=xlsread('SPIRAL_FL-Sleep','REM_E','S6:S572');
Remain_Energy_BMAC=xlsread('SPIRAL_FL-Sleep','REM_E','T6:T484');
Remain_Energy_SOPC=xlsread('SPIRAL_FL-Sleep','REM_E','R6:R557');
Remain_Energy_FL_Sleep=xlsread('SPIRAL_FL-Sleep','REM_E','U6:U600');
figure(f1);
figure_size = [900, 700, 450, 420];
plot(Remain_Energy_RL_Sleep,'-*g','Linewidth',1)
hold on
plot(Remain_Energy_BMAC,'-ob','Linewidth',1)
hold on
plot(Remain_Energy_SOPC,'-dk','Linewidth',1)
hold on
plot(Remain_Energy_FL_Sleep,'-sr','Linewidth',1)
title('Remain_Energy of nodes')
ylabel('Remaining Energy (J)','FontSize',18)
xlabel('Number of rounds','FontSize',18)
legend({'RL-Sleep', 'BMAC', 'SOPC', 'FL-Sleep'})
set(gca, 'FontSize',9, 'FontName','Times New Roman')
set(gcf, 'Position', figure_size )
hold off
%saveas(gcf, '../results/FL_sleep_SPIRAL/fig1.png')

hold off

figure(f2);
subplot(6,1,1)
plot(Temperature)
% subplot(6,2,2)
% plot(Temperature)
subplot(6,1,2)
plot(PacketDeliveryRatio_RL_Sleep,'-*g','Linewidth',1)
hold on
plot(PacketDeliveryRatio_BMAC,'-ob','Linewidth',1)
hold on
plot(PacketDeliveryRatio_SOPC,'-dk','Linewidth',1)
hold on
plot(PacketDeliveryRatio_FL_Sleep,'-sr','Linewidth',1)
title('PacketDeliveryRatio_SPIRAL')
hold off

subplot(6,1,3)
plot(EnergyConsumed_RL_Sleep,'-*g','Linewidth',1)
hold on
plot(EnergyConsumed_BMAC,'-ob','Linewidth',1)
hold on
plot(EnergyConsumed_SOPC,'-dk','Linewidth',1)
hold on
plot(EnergyConsumed_FL_Sleep,'-sr','Linewidth',1)
title('EnergyConsumed_SPIRAL')
hold off


subplot(6,1,4)
plot(ActiveNodeRatio_RL_Sleep,'-*g','Linewidth',1)
hold on
plot(ActiveNodeRatio_BMAC,'-ob','Linewidth',1)
hold on
plot(ActiveNodeRatio_SOPC,'-dk','Linewidth',1)
hold on
plot(ActiveNodeRatio_FL_Sleep,'-sr','Linewidth',1)
title('ActiveNodeRatio_SPIRAL')
legend({'RL-Sleep', 'BMAC', 'SOPC', 'FL-Sleep'})
set(gcf, 'Position', figure_size )
hold off
%saveas(gcf, '../results/FL_sleep_SPIRAL/fig2.png')

%%########-----SPIRAL NETWORK SIMULATION GRAPH UPTO HERE----########
%%########-----SPIRAL NETWORK SIMULATION GRAPH UPTO HERE----########
%%########-----SPIRAL NETWORK SIMULATION GRAPH UPTO HERE----########

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值