基本概念:
从一个起始节点开始把附近与其连通的节点提取出或填充成不同颜色颜色,直到封闭区域内的所有节点都被处理过为止,是从一个区域中提取若干个连通的点与其他相邻区域区分开(或分别染成不同颜色)的经典算法。
算法应用场景
1. 类似于消消乐中,相同颜色的方块可以一并消除,这就是Flood Fill算法的功劳。
2. 扫雷游戏的展开过程。
3. 画图工具中的填充功能。
算法实现方式
可采用深度优先和广度优先算法来实现
例题来源:Acwing1106
题目描述:
FGD小朋友特别喜欢爬山,在爬山的时候他就在研究山峰和山谷。为了能够对旅程有一个安排,他想知道山峰和山谷的数量。给定一个地图,为FGD想要旅行的区域,地图被分为 n×n 的网格,每个格子 (i,j))的高度 w(i,j)是给定的。若两个格子有公共顶点,那么它们就是相邻的格子,如与 (i,j)相邻的格子有(i−1,j−1),(i−1,j),(i−1,j+1),(i,j−1),(i,j+1),(i+1,j−1),(i+1,j),(i+1,j+1)。
我们定义一个格子的集合 S为山峰(山谷)当且仅当:
- S 的所有格子都有相同的高度。
- S 的所有格子都连通。
- 对于 s属于 S,与 s 相邻的 s′ 不属于 S,都有 ws>ws′(山峰),或者 ws<ws′(山谷)。
- 如果周围不存在相邻区域,则同时将其视为山峰和山谷。
你的任务是,对于给定的地图,求出山峰和山谷的数量,如果所有格子都有相同的高度,那么整个地图即是山峰,又是山谷。
输入格式
第一行包含一个正整数 n,表示地图的大小。
接下来一个 n×n 的矩阵,表示地图上每个格子的高度 w。
输出格式
共一行,包含两个整数,表示山峰和山谷的数量。
数据范围
1≤n≤1000
0≤w≤109次方
输入样例1:
5
8 8 8 7 7
7 7 8 8 7
7 7 7 7 7
7 8 8 7 8
7 8 8 8 8
输出样例1:
2 1
输入样例2:
5
5 7 8 3 1
5 5 7 6 6
6 6 6 2 8
5 7 2 5 8
7 1 0 1 7
输出样例2:
3 3
样例解释:
样例1:

样例2:

代码示例:
//BFS
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1010,M=N*N;
int h[N][N];
bool st[N][N];
pair<int,int> q[M];
int n;
void dfs(int x,int y,bool& has_higher, bool& has_lower)
{
int hh=0,tt=0;
q[0]={x,y};
st[x][y]=true;
while(hh<=tt)
{
pair<int,int> t=q[hh++];
for(int i=t.first-1;i<=t.first+1;i++)
{
for(int j=t.second-1;j<=t.second+1;j++)
{
if(i<0 || i>=n || j<0 || j>=n)continue;
if(h[i][j]!=h[t.first][t.second])
{
if(h[i][j]>h[t.first][t.second])has_higher=true;
else has_lower=true;
}
else if(!st[i][j])
{
q[++tt]={i,j};
st[i][j]=true;
}
}
}
}
}
int main()
{
cin>>n;
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
cin>>h[i][j];
}
}
int res=0,sum=0;
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
if(!st[i][j])
{
bool has_higher=false;
bool has_lower=false;
dfs(i,j,has_higher,has_lower);
if(!has_higher)res++;
if(!has_lower)sum++;
}
}
}
cout<<res<<' '<<sum<<endl;
return 0;
}
7687

被折叠的 条评论
为什么被折叠?



