第295题|关于 f “(x)f ‘(x)f(x) 的线性组合|武忠祥老师每日一题

这道题需要的前置知识:

已知:f'(x) - f(x) \geqslant 0,f(0)=0,且x\geqslant 0求证:f(x)\geqslant e^{x}

(e^{-x}f(x))'=e^{-x}f(x)-e^{-x}f(x)=e^{-x}(f'(x)-f(x))

因为f'(x)-f(x)>=0,且e^{-x}>=0,所以

(e^{-x}f(x))'=e^{-x}(f'(x)-f(x))\geqslant 0,单调递增。

g(x) = e^{-x}f(x),g(0)=1

e^{-x}f(x)\geqslant 1

f(x)\geqslant e^{x},得证。

这是一个关于f '(x)f(x) 的线性组合,所以看到与f '(x)f(x) 的线性组合就要联想到这个。

下面看题

看后面不等式,两个系数,一个3一个2,我们不妨把这个稍作变形

f''(x)-5f'(x)+6f(x)=f''(x)-2f'(x)-3f'(x)+6f(x)

=[f''(x)-2f'(x)]-3[f'(x)-2f(x)]

这里利用了上面提到的知识:

这里的[f''(x)-2f'(x)]显然是[f'(x)-2f(x)]的导数,

所以接下来我们令f'(x)-2f(x)=g(x),

原式=g'(x)-3g(x)>=0

很显然:[e^{-3x}g(x)]'=e^{-3x}[g'(x)-3g(x)]\geqslant 0,单调递增

e^{-3x}g(x)\geqslant e^{-0}g(0)=f'(0)-2f(0)=-2

继续变形:g(x)=f'(x)-2f(x)\geqslant -2e^{3x}

e^{-2x}[f'(x)-2f(x)]\geqslant -2e^{x}

[e^{-2x}f(x)]'\geqslant -2e^{x}

[e^{-2x}f(x)+2e^{x}]'\geqslant 0,单调递增

e^{-2x}f(x)+2e^{x}\geqslant f(0)+2=3

f(x)+2e^{3x}\geqslant 3e^{2x},不等式得证。

总结:

形如f'(x)-f(x)联想到:

(e^{-x}f(x))'=e^{-x}(f'(x)-f(x))\geqslant 0

形如f'(x)-2f(x)联想到:

(e^{-2x}f(x))'=e^{-2x}(f'(x)-2f(x))\geqslant 0

形如f'(x)-3f(x)联想到:

(e^{-3x}f(x))'=e^{-3x}(f'(x)-3f(x))\geqslant 0

形如f''(x)-5f(x)+6f(x)联想到:

g'(x)-3g(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gabriel Drop Out

饿饿!饭饭!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值