2024考研数学真题解析-数二:

第一题:

解析:​​​​​​​

第一类间断点:可去间断点,跳跃间断点。

幂指函数x的取值范围是x>0。

接着分母不能为0推出x=1,x=2是间断点,由幂指函数x>0可知,x=0也是间断点。

1.先求x=0处的极限,这里没有必要求0左右两边的极限,直接求即可,因为没有射击到e的正无穷和e的负无穷两种情况。

<0,趋于负无穷,两者之积趋于正无穷。属于无穷间断点。

2.接着讨论x=1时的情况:

x趋于1,显然是正的,直接去掉绝对值符号,接着利用这个公式:

因此x=1是可去间断点,属于第一类间断点。

3.接着看x=2的情况:

先求x=2的极限:出现了2-x,这时候x趋于2正 或 2负,都对e最后的结果有影响。所以这里还要再分开讨论一下

得知x=2是无穷间断点。

第二题:

解析:

第一步:判断极限类型:是无穷大×无穷小,一般的方法是将无穷小或者无穷大除到下面去。

构建无穷小比无穷小的形式,构建完之后发现上下都出现了\frac{1}{x},因此令\frac{1}{x}=t,出现的形式和导数的定义很像:t\rightarrow 0,2t\rightarrow 0

很明显构建出的就是f'(2)的导数的定义式,即可求出原式的结果是2f'(2)。

第二步:接着根据这个参数方程可以求出导数值:

x=2时,t=1。带进去求出结果:

2f'(2)=\frac{4e}{3}

第三题:

解析:

知识储备-做这道题需要用到下面一个结论:

一.变现积分的奇偶性判断:

如果函数f(x)是奇函数,那\int_{a}^{x}f(t)dt是偶函数。

如果函数f(x)是偶函数,那当a=0时,\int_{a}^{x}f(t)dt是奇函数,当a\neq 0时,\int_{a}^{x}f(t)dt的奇偶性不确定。

二.复合函数的奇偶性判断:

对于一个复合函数,内外层函数只要有一个是偶函数,那这个复合函数就是偶函数,也就是说奇函数和偶函数的复合是偶函数,偶函数和偶函数的复合同样是偶函数。

下面来观察这道题:

1.对于f(x):

f(x)=\int_{0}^{sinx}\sin^{3}tdt,f(x)显然是一个\int_{0}^{u}\sin^{3}tdt,u=sinx的复合函数。\sin ^{3}t是一个奇函数,根据我们上面提到的变现积分奇偶性判断的结论,外层函数\int_{0}^{u}\sin^{3}tdt是一个偶函数,同时根据复合函数的奇偶性结论可以得知:\int_{0}^{sinx}\sin^{3}tdt是一个偶函数。直接排除AC。

2.对于g(x):

我们已经得知f(x)是偶函数,且a=0,根据变现积分的奇偶性结论,\int_{0}^{x}f(t)dt是一个奇函数。

答案选D。

第四题:

解析:这道题难度比较高,是比较新的题型。

知识储备

关于反函数有以下几种结论:

1.如果f(x)单调,则f(x)必存在反函数。(注:如果一个函数值对应多个x必然不会存在反函数。)

2.对于一个连续且单调的函数f(x),则它的反函数也一定是单调且连续的,并且单调性一致。

连续和极限相结合的结论:

如果f(x)连续,且\lim_{x\rightarrow \infty }x_{n}=A,则有\lim_{x\rightarrow \infty }f(x_{n})=f(\lim_{x\rightarrow \infty }x_{n})=f(A)

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gabriel Drop Out

饿饿!饭饭!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值