Python实战:基于决策树模型的鸢尾花分类与可视化分析

        本项目基于经典的鸢尾花数据集,采用Python构建决策树分类模型并实现可视化分析。通过数据预处理(标准化、标签编码)和探索性分析(类别分布、特征相关性),建立决策树模型,准确率达96.67%。直观展示基于花瓣/花萼特征的关键决策路径。项目涵盖数据清洗、特征工程、建模评估全流程,突出可视化在模型解释中的重要作用。

1. 项目概述

1.1 背景

        鸢尾花分类是机器学习领域的经典问题,常用于模式识别和分类算法教学。决策树模型因其直观易懂、可解释性强等特点,成为分类任务的首选算法之一。本项目通过Python实现从数据预处理到模型可视化的全流程,为初学者提供完整的机器学习实践案例,同时展示如何通过可视化手段增强模型解释性。

1.2 数据介绍

数据集包含百条鸢尾花样本,每个样本有4个特征:

  • 花萼长度(sepal_length)

  • 花萼宽度(sepal_width)

  • 花瓣长度(petal_length)

  • 花瓣宽度(petal_width)

2. 数据预处理

2.1 数据转换

        使用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值