本项目基于经典的鸢尾花数据集,采用Python构建决策树分类模型并实现可视化分析。通过数据预处理(标准化、标签编码)和探索性分析(类别分布、特征相关性),建立决策树模型,准确率达96.67%。直观展示基于花瓣/花萼特征的关键决策路径。项目涵盖数据清洗、特征工程、建模评估全流程,突出可视化在模型解释中的重要作用。
1. 项目概述
1.1 背景
鸢尾花分类是机器学习领域的经典问题,常用于模式识别和分类算法教学。决策树模型因其直观易懂、可解释性强等特点,成为分类任务的首选算法之一。本项目通过Python实现从数据预处理到模型可视化的全流程,为初学者提供完整的机器学习实践案例,同时展示如何通过可视化手段增强模型解释性。
1.2 数据介绍
数据集包含百条鸢尾花样本,每个样本有4个特征:
-
花萼长度(sepal_length)
-
花萼宽度(sepal_width)
-
花瓣长度(petal_length)
-
花瓣宽度(petal_width)
2. 数据预处理
2.1 数据转换
使用