约瑟夫问题,是一个计算机科学和数学中的问题,在计算机编程的算法中,类似问题又称为约瑟夫环,又称“丢手绢问题”。
问题来历:
据说著名犹太历史学家Josephus有过以下的故事:在罗马人占领乔塔帕特后,39 个犹太人与Josephus及他的朋友躲到一个洞中,39个犹太人决定宁愿死也不要被敌人抓到,于是决定了一个自杀方式,41个人排成一个圆圈,由第1个人开始报数,每报数到第3人该人就必须自杀,然后再由下一个重新报数,直到所有人都自杀身亡为止。然而Josephus 和他的朋友并不想遵从。首先从一个人开始,越过k-2个人(因为第一个人已经被越过),并杀掉第k个人。接着,再越过k-1个人,并杀掉第k个人。这个过程沿着圆圈一直进行,直到最终只剩下一个人留下,这个人就可以继续活着。问题是,给定了和,一开始要站在什么地方才能避免被处决。Josephus要他的朋友先假装遵从,他将朋友与自己安排在第16个与第31个位置,于是逃过了这场死亡游戏。
问题分析:
约瑟夫问题里边的41个人是围城一个圆圈,而循环链表也是一个圆圈,所以可以使用循环链表来模拟真实问题。
解决这个问题的方法有很多种,那么本篇使用快慢指针的方法解决该问题。
解题思路:
1.
初始化两个结构体指针 slow,fast 并分别设为链表的第一位、第二位。
2.
将slow 和 fast 均往后移动一位。
slow = slow -> next;
fast = fast -> next;
3.
此时 fast 就是第一个需要删除的节点,先将 slow 节点的指针指向 fast 后边的节点 slow -> next = fast -> next;, 也就是图中的第四个节点,然后让 slow 指针指向第四个节点 slow = fast -> next; ,此时第三个节点被释放掉 free(fast); ,最后让 fast 指针指向 slow 后边的一个节点 fast = slow -> next;,也就是图中的第五个节点。
完整代码:
#include <stdio.h>
#include <stdlib.h>
typedef struct Node
{
int data;
struct Node *next;
} *LinkList, ElemType;
void nodeKill(LinkList headNode);
void printNode(LinkList headNode);
void createList(LinkList *headNode);
void createList(LinkList *headNode)
{
LinkList rear;
for (int i = 1; i <= 41; i++)
{
LinkList newNode = (LinkList)malloc(sizeof(ElemType));
if (newNode == NULL)
{
printf("内存申请失败!");
exit(1);
}
newNode -> data = i;
if (*headNode == NULL)
{
*headNode = newNode;
}
else
{
rear -> next = newNode;
}
rear = newNode;
}
rear -> next = *headNode;
}
void printNode(LinkList headNode)
{
LinkList temp = headNode;
if (temp != NULL)
{
do{
printf("%d", temp -> data);
temp = temp -> next;
if (temp != headNode)
{
printf(" -> ");
}
}while (temp != headNode);
}
}
void nodeKill(LinkList headNode)
{
LinkList slow = headNode, fast = headNode -> next;
while (slow != fast)
{
slow = slow -> next;
fast = fast -> next;
slow -> next = fast -> next;
slow = fast -> next;
printf("%d -> ", fast -> data);
free(fast);
fast = slow -> next;
}
printf("%d\n", fast -> data);
}
int main(void)
{
LinkList headNode = NULL;
createList(&headNode);
printf("座位顺序: ");
printNode(headNode);
printf("\n");
printf("自杀顺序: ");
nodeKill(headNode);
return 0;
}
运行结果:
座位顺序: 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> 8 -> 9 -> 10 -> 11 -> 12 -> 13 -> 14 -> 15 -> 16 -> 17 -> 18 -> 19 -> 20 -> 21 -> 22 -> 23 -> 24 -> 25 -> 26 -> 27 -> 28 -> 29 -> 30 -> 31 -> 32 -> 33 -> 34 -> 35 -> 36 -> 37 -> 38 -> 39 -> 40 -> 41
自杀顺序: 3 -> 6 -> 9 -> 12 -> 15 -> 18 -> 21 -> 24 -> 27 -> 30 -> 33 -> 36 -> 39 -> 1 -> 5 -> 10 -> 14 -> 19 -> 23 -> 28 -> 32 -> 37 -> 41 -> 7 -> 13 -> 20 -> 26 -> 34 -> 40 -> 8 -> 17 -> 29 -> 38 -> 11 -> 25 -> 2 -> 22 -> 4 -> 35 -> 16 -> 31