一、题目描述
我们正在玩猜数字游戏。猜数字游戏的规则如下:
我会从 1
到 n
随机选择一个数字。 请你猜选出的是哪个数字。
如果你猜错了,我会告诉你,我选出的数字比你猜测的数字大了还是小了。
你可以通过调用一个预先定义好的接口 int guess(int num)
来获取猜测结果,返回值一共有三种可能的情况:
-1
:你猜的数字比我选出的数字大 (即num > pick
)。1
:你猜的数字比我选出的数字小 (即num < pick
)。0
:你猜的数字与我选出的数字相等。(即num == pick
)。
返回我选出的数字。
示例 1:
输入:n = 10, pick = 6 输出:6
示例 2:
输入:n = 1, pick = 1 输出:1
示例 3:
输入:n = 2, pick = 1 输出:1
提示:
1 <= n <= 2^31 - 1
1 <= pick <= n
二、解题思路
这个问题可以使用二分查找算法来解决。二分查找是一种在有序数组中查找特定元素的搜索算法,其基本思想是每次将搜索范围缩小一半,直到找到所需的元素或范围缩小到没有元素为止。
具体步骤如下:
- 初始化两个指针,分别指向数组的起始位置(left)和结束位置(right)。
- 在每次循环中,计算中间位置 mid = (left + right) / 2。
- 使用 guess(mid) 函数判断中间位置的数字与目标数字的关系。
- 如果 guess(mid) 返回 0,说明找到了目标数字,返回 mid。
- 如果 guess(mid) 返回 -1,说明目标数字在左半部分,将 right 设置为 mid - 1。
- 如果 guess(mid) 返回 1,说明目标数字在右半部分,将 left 设置为 mid + 1。
- 重复步骤 2 到 6,直到找到目标数字。
三、具体代码
public class Solution extends GuessGame {
public int guessNumber(int n) {
int left = 1;
int right = n;
while (left <= right) {
int mid = left + (right - left) / 2; // 防止溢出
int res = guess(mid);
if (res == 0) {
return mid; // 找到目标数字
} else if (res < 0) {
right = mid - 1; // 目标数字在左半部分
} else {
left = mid + 1; // 目标数字在右半部分
}
}
return -1; // 如果没有找到,返回-1(题目保证一定有解,所以这里不会执行到)
}
}
在这段代码中,我们使用了二分查找算法来找到正确的数字。注意,我们在计算 mid 时使用了 left + (right - left) / 2
而不是 (left + right) / 2
,这是为了避免在 left 和 right 都很大的情况下发生整数溢出。
四、时间复杂度和空间复杂度
1. 时间复杂度
时间复杂度描述了算法执行时间随输入规模增长的趋势。对于二分查找算法,每次迭代都会将搜索范围缩小一半。因此,算法的时间复杂度是 O(log n),其中 n 是搜索范围的长度。
在二分查找中,假设我们进行了 k 次迭代,那么每次迭代都会将搜索范围减半。这意味着第 k 次迭代时,搜索范围将是初始范围的一半的 k 次方,即 n / 2^k。当搜索范围缩小到只剩下一个元素时,即 n / 2^k = 1,我们可以解出 k = log n(以 2 为底)。因此,算法的时间复杂度是 O(log n)。
2. 空间复杂度
空间复杂度描述了算法执行过程中所需存储空间的大小。对于上述的二分查找算法,我们只使用了常数个额外空间(left、right、mid 和 res),因此算法的空间复杂度是 O(1)。
3. 总结
- 时间复杂度:O(log n),因为算法的运行时间随着输入规模的增长而呈对数增长。
- 空间复杂度:O(1),因为算法使用了固定数量的额外空间,与输入规模无关。
五、总结知识点
-
类继承:
public class Solution extends GuessGame
:Solution
类继承了GuessGame
类。这意味着Solution
类可以访问GuessGame
类的所有非私有成员(包括方法)。
-
方法定义:
public int guessNumber(int n)
:定义了一个名为guessNumber
的公共方法,它接受一个整数n
作为参数,并返回一个整数。
-
二分查找算法:
- 使用了二分查找算法来查找一个特定的数字。二分查找是一种高效查找算法,适用于有序数据集。
-
循环结构:
while (left <= right)
:使用while
循环来重复执行代码块,直到给定的条件不再满足。
-
防止整数溢出:
int mid = left + (right - left) / 2;
:在计算中点时,为了避免left
和right
都很大时可能发生的整数溢出,使用(right - left) / 2
而不是(left + right) / 2
。
-
条件判断:
if (res == 0)
:检查guess
方法的返回值。guess
方法返回0
表示找到了正确的数字。else if (res < 0)
:如果guess
方法返回-1
,表示猜测的数字太大,需要调整搜索范围到左半部分。else
:如果guess
方法返回1
,表示猜测的数字太小,需要调整搜索范围到右半部分。
-
变量更新:
right = mid - 1;
和left = mid + 1;
:根据guess
方法的返回值来更新搜索范围的边界。
-
方法返回值:
return mid;
:当找到正确的数字时,返回该数字。return -1;
:虽然题目保证一定有解,但为了完整性,如果没有找到数字,理论上应该返回-1
。
-
接口与实现分离:
guess(int num)
方法是GuessGame
类的一部分,但它的具体实现没有在Solution
类中给出。这是接口与实现分离的一个例子,有利于代码的模块化和复用。
以上就是解决这个问题的详细步骤,希望能够为各位提供启发和帮助。