LeetCode题练习与总结:猜数字大小--374

一、题目描述

我们正在玩猜数字游戏。猜数字游戏的规则如下:

我会从 1 到 n 随机选择一个数字。 请你猜选出的是哪个数字。

如果你猜错了,我会告诉你,我选出的数字比你猜测的数字大了还是小了。

你可以通过调用一个预先定义好的接口 int guess(int num) 来获取猜测结果,返回值一共有三种可能的情况:

  • -1:你猜的数字比我选出的数字大 (即 num > pick)。
  • 1:你猜的数字比我选出的数字小 (即 num < pick)。
  • 0:你猜的数字与我选出的数字相等。(即 num == pick)。

返回我选出的数字。

示例 1:

输入:n = 10, pick = 6
输出:6

示例 2:

输入:n = 1, pick = 1
输出:1

示例 3:

输入:n = 2, pick = 1
输出:1

提示:

  • 1 <= n <= 2^31 - 1
  • 1 <= pick <= n

二、解题思路

这个问题可以使用二分查找算法来解决。二分查找是一种在有序数组中查找特定元素的搜索算法,其基本思想是每次将搜索范围缩小一半,直到找到所需的元素或范围缩小到没有元素为止。

具体步骤如下:

  1. 初始化两个指针,分别指向数组的起始位置(left)和结束位置(right)。
  2. 在每次循环中,计算中间位置 mid = (left + right) / 2。
  3. 使用 guess(mid) 函数判断中间位置的数字与目标数字的关系。
  4. 如果 guess(mid) 返回 0,说明找到了目标数字,返回 mid。
  5. 如果 guess(mid) 返回 -1,说明目标数字在左半部分,将 right 设置为 mid - 1。
  6. 如果 guess(mid) 返回 1,说明目标数字在右半部分,将 left 设置为 mid + 1。
  7. 重复步骤 2 到 6,直到找到目标数字。

三、具体代码

public class Solution extends GuessGame {
    public int guessNumber(int n) {
        int left = 1;
        int right = n;
        while (left <= right) {
            int mid = left + (right - left) / 2; // 防止溢出
            int res = guess(mid);
            if (res == 0) {
                return mid; // 找到目标数字
            } else if (res < 0) {
                right = mid - 1; // 目标数字在左半部分
            } else {
                left = mid + 1; // 目标数字在右半部分
            }
        }
        return -1; // 如果没有找到,返回-1(题目保证一定有解,所以这里不会执行到)
    }
}

在这段代码中,我们使用了二分查找算法来找到正确的数字。注意,我们在计算 mid 时使用了 left + (right - left) / 2 而不是 (left + right) / 2,这是为了避免在 left 和 right 都很大的情况下发生整数溢出。

四、时间复杂度和空间复杂度

1. 时间复杂度

时间复杂度描述了算法执行时间随输入规模增长的趋势。对于二分查找算法,每次迭代都会将搜索范围缩小一半。因此,算法的时间复杂度是 O(log n),其中 n 是搜索范围的长度。

在二分查找中,假设我们进行了 k 次迭代,那么每次迭代都会将搜索范围减半。这意味着第 k 次迭代时,搜索范围将是初始范围的一半的 k 次方,即 n / 2^k。当搜索范围缩小到只剩下一个元素时,即 n / 2^k = 1,我们可以解出 k = log n(以 2 为底)。因此,算法的时间复杂度是 O(log n)。

2. 空间复杂度

空间复杂度描述了算法执行过程中所需存储空间的大小。对于上述的二分查找算法,我们只使用了常数个额外空间(left、right、mid 和 res),因此算法的空间复杂度是 O(1)。

3. 总结
  • 时间复杂度:O(log n),因为算法的运行时间随着输入规模的增长而呈对数增长。
  • 空间复杂度:O(1),因为算法使用了固定数量的额外空间,与输入规模无关。

五、总结知识点

  • 类继承

    • public class Solution extends GuessGameSolution 类继承了 GuessGame 类。这意味着 Solution 类可以访问 GuessGame 类的所有非私有成员(包括方法)。
  • 方法定义

    • public int guessNumber(int n):定义了一个名为 guessNumber 的公共方法,它接受一个整数 n 作为参数,并返回一个整数。
  • 二分查找算法

    • 使用了二分查找算法来查找一个特定的数字。二分查找是一种高效查找算法,适用于有序数据集。
  • 循环结构

    • while (left <= right):使用 while 循环来重复执行代码块,直到给定的条件不再满足。
  • 防止整数溢出

    • int mid = left + (right - left) / 2;:在计算中点时,为了避免 left 和 right 都很大时可能发生的整数溢出,使用 (right - left) / 2 而不是 (left + right) / 2
  • 条件判断

    • if (res == 0):检查 guess 方法的返回值。guess 方法返回 0 表示找到了正确的数字。
    • else if (res < 0):如果 guess 方法返回 -1,表示猜测的数字太大,需要调整搜索范围到左半部分。
    • else:如果 guess 方法返回 1,表示猜测的数字太小,需要调整搜索范围到右半部分。
  • 变量更新

    • right = mid - 1; 和 left = mid + 1;:根据 guess 方法的返回值来更新搜索范围的边界。
  • 方法返回值

    • return mid;:当找到正确的数字时,返回该数字。
    • return -1;:虽然题目保证一定有解,但为了完整性,如果没有找到数字,理论上应该返回 -1
  • 接口与实现分离

    • guess(int num) 方法是 GuessGame 类的一部分,但它的具体实现没有在 Solution 类中给出。这是接口与实现分离的一个例子,有利于代码的模块化和复用。

以上就是解决这个问题的详细步骤,希望能够为各位提供启发和帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一直学习永不止步

谢谢您的鼓励,我会再接再厉的!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值