自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 WeClone:用微信聊天记录打造你的专属数字分身

WeClone 是一个开放源码项目,能通过个人微信聊天记录微调大语言模型(LLM),并结合声音克隆技术,让你的“数字分身”不仅“说你的话”,还能“听你的声”。自 2024 年上线以来,项目迅速积累了 4.6k⭐、350🍴,并入选 HelloGitHub 月度榜单,当前最新版本 v0.2.2(2025-05-08 发布)已为更大规模训练和多卡并行做好准备。

2025-05-13 16:05:03 1769 1

原创 突破交通预测瓶颈:全新改进的时空图卷积网络(STGCN)揭示未来交通流动的奥秘!

🔍🌐在现代城市交通管理中,准确的交通预测至关重要。为了应对这一挑战,我们开发了一个基于深度学习的时空图卷积网络(STGCN),旨在提升交通流量预测的准确性和效率。本文将详细介绍我们的代码实现及其主要改进点。

2024-12-07 19:58:19 1142

原创 图片裁剪利器:滑动窗口裁剪

适用于图片像素过大时对图像进行处理

2024-11-11 12:38:19 589

原创 TransUNet 三通道数据集处理方法

最近,我在训练TransUNet网络时遇到了一些挑战,特别是在处理高版本Labelme标注的数据集和三通道输入时,数据集转换失败。为了记录这一过程并分享解决方案,我将详细介绍我在处理高版本标注和TransUNet三通道数据集时的经验和方法。

2024-10-31 10:23:21 339

原创 突破医疗AI的极限!新型E2ENet模型,让3D医学图像分割更高效、更精准!

近年来,深度神经网络在3D医学图像分割领域取得了巨大的进展,但随着模型复杂度的增加,计算成本和硬件资源的消耗也在急剧增长。对于许多实际应用场景,尤其是在资源受限的硬件上,这成为了一个重大障碍。对此,最新的研究提出了一个革命性的解决方案——。这篇文章将向你揭示这个高效、准确的3D医学图像分割模型背后的创新设计及其在临床应用中的巨大潜力。E2ENet,全称Efficient to Efficient Network,旨在解决当前3D医学图像分割模型在性能与计算效率之间的矛盾。

2024-10-14 13:31:32 539 1

原创 基于MediaPipe的全身骨骼关键点实时检测+手部关键点角度检测

人体骨骼关键点检测

2024-07-30 13:17:11 2145

原创 【爆火】TransUNet:融合Transformer与U-Net的医学图像分割神器!

在医学图像分割领域,传统的U-Net模型已经取得了显著成果。然而,随着Transformer在计算机视觉领域的崛起,将其与U-Net结合的TransUNet模型成为了新的热门。TransUNet是一种融合了Transformer和U-Net结构的深度学习模型,旨在提高医学图像分割的精度。它结合了Transformer的全局上下文理解能力和U-Net的局部特征提取能力,非常适合处理复杂的医学图像。然后需要生成一个包含训练数据集信息的txt文件,具体的生成代码如下,利用同样的方法生成验证集的txt文件。

2024-07-02 10:58:41 4145 6

原创 倾斜摄影测量:实现图像坐标到真实世界坐标的转换

相机内参矩阵(Intrinsic Matrix)用于描述相机的内部特性,包括焦距、主点位置(光学中心)以及像素尺寸等。这些参数帮助我们将图像坐标与相机坐标系联系起来。相机外参矩阵(Extrinsic Matrix)用于描述相机在世界坐标系中的位置和姿态。它包括旋转矩阵和平移向量,帮助我们将相机坐标系下的坐标转换为世界坐标系下的坐标。print("世界坐标:")longitude1 = 117 # 中央子午线 根据实际进行配置Y0 = 0M = yval# 转换为度。

2024-06-02 12:32:30 2587 2

原创 深度解读 YOLOv10:新一代实时端到端目标检测模型

YOLOv10通过去除NMS的双重分配策略和整体效率-准确性驱动的模型设计,在保持高准确性的同时,实现了更低的延迟和更小的模型规模。其卓越的性能和广泛的应用前景,使其成为实时目标检测领域的新标杆。我们期待未来YOLOv10能够在更多实际场景中得到应用,并推动相关技术的发展。如果您对YOLOv8模型的改进和深度学习技术感兴趣,欢迎关注我的微信公众号"AI代码 Insights"。在这里,我会定期分享最新的人工智能技术、深度学习算法和实践经验,与大家共同探讨AI领域的前沿动态。

2024-05-31 19:58:11 2580

原创 YOLOv8 改进方案详解:双向特征金字塔、蛇形卷积和改进注意力机制的应用

YOLOv8是Ultralytics发布的一款目标检测模型,采用了先进的架构设计和高效的计算方式。YOLOv8模型通过引入更深的层次和更多的参数,提升了目标检测的精度和速度。其核心架构包括主干网络(backbone)、特征金字塔网络(FPN)和检测头(head)。

2024-05-30 12:54:03 1112

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除