一、名词解释 1.什么叫深度学习 深度学习是一种人工智能技术,在计算机系统中通过多层(深度)神经网络模拟人类的学习方式,从大量数据中学习并提取特征,最终实现分类、识别、预测等任务。深度学习的核心是通过反向传播算法来优化神经网络中的权重和偏置,进而提高模型的准确率和泛化能力。深度学习在图像识别、语音识别、自然语言处理、推荐系统等领域都取得了极大的成功,成为了目前最为先进和有效的人工智能技术之一。 2.什么叫机器学习 机器学习是人工智能的一种分支,是指让计算机自动从数据中学习规律,并利用学习到的模型来进行预测、分类、聚类等任务。机器学习的核心是构建一个能够从数据中自动学习的模型,该模型可以通过有监督学习、无监督学习、半监督学习、强化学习等方法进行训练。有监督学习是指通过输入样本的标签来指导模型学习,无监督学习则是在没有标签的情况下让模型自己去学习数据的分布规律,半监督学习是有监督学习和无监督学习的结合,强化学习则是指通过让智能体与环境进行交互学习最优策略的方法。机器学习已经成为现代计算机科学中的一个重要领域,广泛应用于自然语言处理、图像识别、预测分析、推荐系统等方面。 3.什么叫人工智能 人工智能(Artificial Intelligence, AI)是计算机科学的一个分支领域,其目的是研究和开发智能机器,使其能够模拟人类智能执行各种任务,比如语音识别、图像识别、自然语言处理、推荐系统等等。人工智能是一种广义的概念,它包括了许多领域的技术,如机器学习、深度学习、自然语言处理(NLP)、计算机视觉、语音识别等。人工智能技术的核心是让计算机能够像人一样处理和理解信息、学习并应用知识、做出决策和行动,以达到或超过人类智能的水平,并在各种领域为人类服务。 4.什么叫感受野 感受野(Receptive Field)指的是神经网络中某个神经元对输入的影响区域大小。在卷积神经网络(CNN)中,每个卷积层的输出都是由几个局部区域的输入所共同贡献的,这些局部区域的大小和数量决定了该层的感受野大小。一个神经元的感受野可以理解为是该神经元对于输入中哪些部分的信息进行了处理和响应。感受野大小的变化会对网络结构的特征提取能力和计算效率产生影响,如增大感受野可以提高神经元对于图像中全局信息的处理能力,但也会带来较高的计算复杂度。感受野在图像分割和目标检测等任务中也具有重要的意义,可以帮助确定哪些像素需要被聚焦并且进行分类或分割。 二、选择题 1.以下哪一项在神经网络中引入了非线性?(B) A.Dropout B.修正线性单元(ReLU) C.卷积函数 D.随机梯度下降 2.不属于图像分类技术应用领域的是?(D) A.商品自动分类 B.运输车辆识别 C.残次品自动分类 D.自动驾驶技术 3.不属于深度学习网络模型?(D) A.GoogleNet B.AlexNet C.resNet D.SVM 4.首次提出人工智能是在哪一年?(D) A. 1946年 B. 1960年 C.1916年 D.1956年 三、填空题 1.常用的激活函数有Sigmoid,ReLU,<