【西瓜书+南瓜书】第3章学习笔记

本文探讨了信息论中的关键概念,如最小二乘法、极大似然估计和信息熵,以及它们在数据压缩和机器学习中的作用,特别提及了相对熵(KL散度)在度量分布差异的应用,以及几何视角下的投影优化,如二范数和拉格朗日乘子法在模型训练中的运用。
摘要由CSDN通过智能技术生成

最小二乘法:

极大似然估计:

信息论:以概率论、随机过程为基本研究工具,研究广义通信系统的整个过程。常见的应用有无损数据压缩(如ZIP文件)、有损数据压缩(如MP3和JPEG)等。

自信息:
                                                               I(X)=-\log_{b}p(x)
当 b=2 时单位为bit,当b = e时单位为nat

信息熵(自信息的期望): 度量随机变量X的不确定性,信息熵越大越不确定

                                   H(X)=E[I(X)]=-\sum_{x}p(x)\log_{b}p(x)    (此处以离散型为例)


计算信息熵时约定: 若p(x)=0,则p(x)\log_{b}p(x)=0  。

相对熵 (KL散度):度量两个分布的差异,其典型使用场景是用来度量理想分布p(x)和模拟分布q(x)之间的差异。
                                  D_{KL}(p||q)=\sum_{x}p(x)\log_{b}(\frac{p(x)}{q(x)})

               =\sum_{x}p(x)(\log_{b}p(x)-\log_{b}q(x))

                             =\sum_{x}p(x)\log_{b}p(x)-\sum_{x}p(x)\log_{b}q(x)


其中-\sum_{x}p(x)\log_{b}q(x) 称为交叉熵。

从几何的角度,让全体训练样本经过投影后:

异类样本的中心尽可能远(并非严格投影):

二范数\left | \right | a \left | \right |_{2} :向量a的模长。                  \left | \right | a \left | \right |_{2}^{2}   a的模长的平方,相当于a的转置乘以a。

同类样本的方差尽可能小(并非严格方差):

拉格朗日乘子法:

广义特征值:

广义瑞利商:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值