【机器学习】概率图模型(贝叶斯网、隐马尔可夫模型HMM)

若变量间存在显式的因果关系,常使用贝叶斯网。

若变量间存在相关性但难以获取显式的因果关系,常使用马尔可夫网。

一、贝叶斯网

 

贝叶斯网 亦称“信念网”它借助有向无环图来刻画属性间的依赖关系,并使用条件概率表

来表述属性的联合概率分布。

e90211a9e02365a108817b00cf4cc579.png
6e138895e995ae7a8d95d85489b1438d.png
d007efe7b32a221a1c053c05e18d9363.png
8ec8dd05a2cfc93f9dd44a3df52622d1.png

 

二、隐马尔可夫模型

1、马尔可夫模型

6d73d42daa120b0637f1437719442847.png
4d516d05988cfef357a1b12658b1034b.png

例子:

c541bab4cff44011a9d07a57701f705f.png
d1a348db34b84177e87b074b42ed7b39.png

2、隐马尔可夫模型

06c20f03293dc5a4dbb187fe508d9f54.png
8e946b74b05c8fa7ff533535566d152f.png
aaa8de7dc194f3d9ad709b6481a3b823.png

3、隐马尔可夫模型三种类型的问题

fe7a446157e09d5fe592c0afae99c5cb.png
  • 评价问题

前向算法:

7cc529a7b75232b7789218ecd7986c92.png
386526153d68791fb95ea053a0942cdb.png

后向算法:

0d72b4331fa14d22df2a98c5c5bc15d3.png
  • 解码问题

维特比算法:

Viterbi算法是每次记录到当前时刻,每个观察标签的最优序列,如下图,假设在t时刻已经保存了从0到t时刻的最优路径,那么t+1时刻只需要计算从t到t+1的最优就可以了,图中红箭头表示从t时刻到t+1时刻,观测标签为1,2,3的最优。

d99ab70a3bf56dd5ef9640b21c76e46b.png

每次只需要保存到当前位置最优路径,之后循环向后走。到结束时,从最后一个时刻的最优值回溯到开始位置,回溯完成后,这个从开始到结束的路径就是最优的

  • 学习问题

鲍姆-韦尔奇算法流程:

5ac77296d545cf70efbcd3cd8f5369b4.png

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值