一、Basic RNN
- 神经网络需要记忆功能,捕获历史时刻的信息
- 将t时刻隐藏层的输出重新输入到隐藏 层中,作为t+1时刻的输入


从左到右扫描序列数据,每个时间步共享参数

how to do in pytorch?
我们首先从最基本的RNN Cell来更直观地了解一下RNN的原理



但一般不使用RNN Cell,pytorch为我们提供了可以直接使用的nn.RNN


这里多了一个输入的值num_layers,什么是num_layers呢?这就需要引入深层神经网络。











从左到右扫描序列数据,每个时间步共享参数

我们首先从最基本的RNN Cell来更直观地了解一下RNN的原理



但一般不使用RNN Cell,pytorch为我们提供了可以直接使用的nn.RNN


这里多了一个输入的值num_layers,什么是num_layers呢?这就需要引入深层神经网络。










被折叠的 条评论
为什么被折叠?