torch.bmm()

torch.bmm是PyTorch中的一个关键函数,用于执行批量矩阵乘法操作。它接受两个张量,例如(10,3,4)和(10,4,5),对它们的最后两个维度进行矩阵乘法,返回结果张量(10,3,5)。这个函数在处理多个矩阵和深度学习模型中尤其有用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

torch.bmm是PyTorch中的一个函数,用于执行批量矩阵乘法(Batch Matrix Multiplication)的操作。它接受三个张量作为输入,并返回批量矩阵乘法的结果。

具体而言,torch.bmm(input, mat2)函数执行的是将inputmat2进行批量矩阵乘法的操作。这意味着它会对inputmat2的最后两个维度执行矩阵乘法,并保持其他维度不变。

以下是torch.bmm函数的示例用法:

import torch

# 创建两个张量
batch1 = torch.randn(10, 3, 4)  # 形状为 (10, 3, 4)
batch2 = torch.randn(10, 4, 5)  # 形状为 (10, 4, 5)

# 执行批量矩阵乘法
result = torch.bmm(batch1, batch2)

print(result.shape)  # 输出 (10, 3, 5)

在这个示例中,我们创建了两个形状分别为(10, 3, 4)(10, 4, 5)的张量batch1batch2。它们的形状适合执行批量矩阵乘法操作。

通过torch.bmm(batch1, batch2),我们将batch1batch2的最后两个维度进行矩阵乘法操作。这将生成一个形状为(10, 3, 5)的结果张量result,其中第一个维度表示批量大小,第二个维度表示batch1中的矩阵数量,第三个维度表示batch2中的矩阵数量。

torch.bmm函数在许多情况下非常有用,特别是当需要同时处理多个矩阵,并进行矩阵乘法操作时,可以利用该函数的批量处理功能。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值