从四开始的深度学习——拟合情况和权重衰退

参考来源:

动手深度学习(第二版)

一、模型选择,欠拟合和过拟合

1、过拟合与欠拟合现象

过拟合(overfitting):模型在训练数据上拟合的比在潜在分布中更接近的现象。

欠拟合(underfitting):模型过于简单(即表达能力不足), 无法捕获试图学习的模式。

用判断一个物品是否为树叶为例子,一个优秀的模型应该能识别出树叶并不会将其他事务识别成树叶。在欠拟合的情况下,模型可能识别不出来什么东西是树叶。而在过拟合的情况下,一些偏离平均样本的离散样本也无法被识别出来。

2、训练误差和泛化误差

训练误差:模型在训练数据集中的误差

泛化误差:模型在测试数据集中的误差

训练误差能作为我们训练模型的参考,但他的好坏并不能决定我们的最终要求。我们更关注的还是泛化误差的表现。一般来讲,训练误差会比泛化误差低一些,而且随着训练误差的减小,泛化误差可能会反向增大。所以如何降低泛化误差,就成了我们至关重要的难题。

3、模型泛化能力

当我们有简单的模型和大量的数据时,我们期望泛化误差与训练误差相近。 当我们有更复杂的模型和更少的样本时,我们预计训练误差会下降,但泛化误差会增大。一个模型是否能很好地泛化取决于很多因素。 

影响模型泛化能力的因素主要有以下几个:

  1. 数据数量和质量:模型能否从数据中学到足够的规律,数据的多寡和质量对于模型的泛化能力影响非常大。

  2. 数据集的分布:训练集、验证集和测试集与真实世界的分布情况是否相似。如果数据集的分布与真实世界的分布不同,那么模型的泛化能力会大大降低。

  3. 模型的复杂度:模型的复杂度直接影响着它的泛化能力。过于简单的模型可能无法表达复杂的模式,而过于复杂的模型容易出现过拟合现象。

  4. 训练时的优化算法及参数设置:优化算法和参数的选择对于模型的泛化能力也影响较大。例如,学习率的设置要合适,过大或过小都不行。

  5. 特征提取的方式:特征提取是指将原始数据转换为可输入模型的形式。特征提取的方式也会影响模型的泛化能力。如果特征提取方法不恰当,会导致模型无法正确识别和处理数据。

4、模型选择

(1)验证数据集

在模型的训练过程中,可能会出现过拟合了训练数据的情况,这时如果用测试数据集进行训练来降低过拟合现象的话,又是不被允许的。训练数据集应该在模型训练完毕后再进行使用。这时,我们可以将原有数据集多划分出一个验证数据集,验证训练出的结果是否存在问题。

(2)k折交叉验证

原始训练数据被分成K个不重叠的子集。 然后执行K次模型训练和验证,每次在K−1个子集上进行训练, 并在剩余的一个子集(在该轮中没有用于训练的子集)上进行验证。 最后,通过对K次实验的结果取平均来估计训练和验证误差。

(3)模型复杂度的影响

5、代码说明

import math
import numpy as np
import torch
from torch import nn
from d2l import torch as d2l

max_degree = 20  # 多项式的最大阶数
n_train, n_test = 100, 100  # 训练和测试数据集大小
true_w = np.zeros(max_degree)  # 分配大量的空间
true_w[0:4] = np.array([5, 1.2, -3.4, 5.6])

features = np.random.normal(size=(n_train + n_test, 1))
np.random.shuffle(features)
poly_features = np.power(features, np.arange(max_degree).reshape(1, -1))
for i in range(max_degree):
    poly_features[:, i] /= math.gamma(i + 1)  # gamma(n)=(n-1)!
# labels的维度:(n_train+n_test,)
labels = np.dot(poly_features, true_w)
labels += np.random.normal(scale=0.1, size=labels.shape)

# NumPy ndarray转换为tensor
true_w, features, poly_features, labels = [torch.tensor(x, dtype=
    torch.float32) for x in [true_w, features, poly_features, labels]]

features[:2], poly_features[:2, :], labels[:2]

def evaluate_loss(net, data_iter, loss):  #@save
    """评估给定数据集上模型的损失"""
    metric = d2l.Accumulator(2)  # 损失的总和,样本数量
    for X, y in data_iter:
        out = net(X)
        y = y.reshape(out.shape)
        l = loss(out, y)
        metric.add(l.sum(), l.numel())
    return metric[0] / metric[1]

def train(train_features, test_features, train_labels, test_labels,
          num_epochs=400):
    loss = nn.MSELoss(reduction='none')
    input_shape = train_features.shape[-1]
    # 不设置偏置,因为我们已经在多项式中实现了它
    net = nn.Sequential(nn.Linear(input_shape, 1, bias=False))
    batch_size = min(10, train_labels.shape[0])
    train_iter = d2l.load_array((train_features, train_labels.reshape(-1,1)),
                                batch_size)
    test_iter = d2l.load_array((test_features, test_labels.reshape(-1,1)),
                               batch_size, is_train=False)
    trainer = torch.optim.SGD(net.parameters(), lr=0.01)
    animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log',
                            xlim=[1, num_epochs], ylim=[1e-3, 1e2],
                            legend=['train', 'test'])
    for epoch in range(num_epochs):
        d2l.train_epoch_ch3(net, train_iter, loss, trainer)
        if epoch == 0 or (epoch + 1) % 20 == 0:
            animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss),
                                     evaluate_loss(net, test_iter, loss)))
    print('weight:', net[0].weight.data.numpy())
    
# 从多项式特征中选择前4个维度,即1,x,x^2/2!,x^3/3!
train(poly_features[:n_train, :4], poly_features[n_train:, :4],
      labels[:n_train], labels[n_train:])
# 从多项式特征中选择前2个维度,即1和x
train(poly_features[:n_train, :2], poly_features[n_train:, :2],
      labels[:n_train], labels[n_train:])
# 从多项式特征中选取所有维度
train(poly_features[:n_train, :], poly_features[n_train:, :],
      labels[:n_train], labels[n_train:], num_epochs=1500)

正常拟合:loss在10^{-2}左右,切训练与测试接近

欠拟合:loss在8左右,训练大大的不充分

 过拟合:在这种情况下,没有足够的数据用于学到高阶系数应该具有接近于零的值。 因此,这个过于复杂的模型会轻易受到训练数据中噪声的影响。 虽然训练损失可以有效地降低,但测试损失仍然很高。

二、权重衰退(正则化)

在上文中,我们为了解决过拟合现象,限制了特征的数量。但随机丢掉特征未免有些过于生硬。且随着阶数d的升高,往往一些微小的变化,都会爆炸式 的增长我们模型的复杂程度,这时候丢掉某些特征已经不足以适应这种爆发式变化的复杂度问题, 权重衰减(weight decay)成为了一个不错的选择。

 权重衰减(weight decay)是最广泛使用的正则化的技术之一, 通常也被称为L2正则化。 整体思路为通过对模型的权重进行惩罚,来抑制模型的过拟合,也就是限制参数值的选择范围进而限制了整个模型的复杂程度。具体地说,它是在损失函数中添加一个正则项,这个正则项的值与模型权重的平方和成正比。以我们之前学过的线性回归为例,他的损失函数如下所示:

                  

在加入正则项惩罚后,损失函数就成了如下的式子:

                                           

当超参数λ=0,得到的还是原来的损失函数。 

当超参数λ->无穷时,我们限制‖w‖的大小,使得最优解w*趋向于0。 

这里的1/2也是用于求导后使得常数项系数为零,简化最终算式。

那为什么这个式子能减低模型的复杂程度,使其不会过拟合呢?李沫老师在这里讲的十分清楚。

 

如图所示,绿色曲线为原损失函数的大小,黄色曲线为正则项的大小,两者相切于一点w*.先看原损失函数的曲线可知。曲线最外层的点应该是权重未更新时的状态,此时得到的曲线梯度是最大的,更新幅度也是最大的。通过不断地更新,最后在 ~w*处梯度近似为零,曲线不再更新,得到原最优解,但是有过拟合的风险。

在加入黄色曲线后,由图可知随着原损失函数的不断更新趋进~w*,正则项的梯度也在不断得变大,且变大得速率比原损失函数变小得速率块,使得两式之和的值向外拉,最终在两个曲线相切的w*点出达到平衡点,此时模型停止更新。

需要额外注意的是,新得到的解w*不是模型的最优解,原~w*才是。但w*却正是我们想要得到的东西。正则化处理的目的就是去将拟合结果拉离容易过拟合的位置,使新解在接近最优解的情况下具有更好的鲁棒能力。

在加入正则项后,我们再使用梯度下降法更新权重时就会得到新的公式:

      

我们仅考虑惩罚项,优化算法在训练的每一步衰减权重。 与特征选择相比,权重衰减为我们提供了一种连续的机制来调整函数的复杂度。 较小的λ值对应较少约束的w, 而较大的λ值对w的约束更大。

代码验证:

%matplotlib inline
import torch
from torch import nn
from d2l import torch as d2l
n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)
def init_params():
    w = torch.normal(0, 1, size=(num_inputs, 1), requires_grad=True)
    b = torch.zeros(1, requires_grad=True)
    return [w, b]
def l2_penalty(w):
    return torch.sum(w.pow(2)) / 2
def train(lambd):
    w, b = init_params()
    net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss
    num_epochs, lr = 100, 0.003
    animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
                            xlim=[5, num_epochs], legend=['train', 'test'])
    for epoch in range(num_epochs):
        for X, y in train_iter:
            # 增加了L2范数惩罚项,
            # 广播机制使l2_penalty(w)成为一个长度为batch_size的向量
            l = loss(net(X), y) + lambd * l2_penalty(w)
            l.sum().backward()
            d2l.sgd([w, b], lr, batch_size)
        if (epoch + 1) % 5 == 0:
            animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),
                                     d2l.evaluate_loss(net, test_iter, loss)))
    print('w的L2范数是:', torch.norm(w).item())
train(lambd=0)
train(lambd=10)

                   

 

 

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

朝闻夕逝752

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值