要点一:数据与智能的关系
1. 一切的核心都是数据,数据和智能之间是密切相关的。
数据是对客观现实的描述,而信息是数据转化而来的。
例如,24是数据,但说“今天的气温是24摄氏度”是信息,而说“班可以分成24个小组”是数据。
2. 数据和信息是可以互相转化的,人类通过人类的语义结构(semantics)来赋予数据信息。
处理数据成为信息是由人类主观导向的,加入了对数据的理解和认知。
3.信息可以通过观察现象总结出结论,形成理论。两个关键词:phenomenon和theory。知识体系是由现象和理论的循环构成的, 理论对现象可以进行验证、修正或解释,理论对现象的作用包括检验、预测和解释, 知识通过变成信息,再变成智能。
本文探讨了数据与智能、人工智能与数据的紧密关系,强调数据在智能生成中的核心地位。介绍了大数据专业学习,包括数据存储、清洗、处理、可视化和数据挖掘。讨论了数据挖掘的分类、聚类和关联分析,以及其在自动驾驶、推荐系统中的应用。同时,提到了自然语言处理在情感分析中的应用,并鼓励学习者结合专业背景提升竞争力。
订阅专栏 解锁全文
&spm=1001.2101.3001.5002&articleId=135277269&d=1&t=3&u=12a9275b7f5b4c9db62e1a6cfeb914f8)
476

被折叠的 条评论
为什么被折叠?



