
⛄一、案例简介
1 引言
目前烟雾检测绝大多数还是采用感烟、感温、感光以及复合型检测器,这些检测器是依靠检测燃烧过程中的副产物(烟雾粒子、温度变化等)来检测烟雾的,因此只能在离火焰和烟雾源较近的地方才能快速有效的发挥探测作用,对于大的空间或者户外场所,其检测的可靠性较低。
为了提高检测烟雾的实时性和可靠性,2009年左右国内外的一些学者致力于应用图像处理技术进行烟雾检测的研究。B Ugur Toreyin等人提出了基于小波的视频烟雾检测技术,该方法假设摄像机静止不动,烟雾出现使背景景物边缘模糊,在小波域上表现为高频能量降低。
而根据烟雾自身的特征——背景模糊性、扩散性、主方向角性等,基于摄像头不动的检测模型又有很多种方法,但是本人在比较了各种方法的实现的难易程度、检测的准确度等几个方面后,认为背景模糊性即简便、易于理解,且又不失准确度,因此我采用了背景模糊性这单一特征进行深入研究。
但是,该算法的缺点是烟雾检测的前提条件是背景图像中必须有较强的边缘和纹理成分,从而限制了该算法的应用范围。
2 背景模糊模型
该博客介绍了利用图像处理技术进行烟雾检测的研究,特别是基于背景模糊模型的方法。通过Matlab实现,利用小波变换检测烟雾导致的背景模糊,通过比较当前图像与背景图像的高频能量变化来识别烟雾区域。文章包含部分源代码和运行结果展示。
订阅专栏 解锁全文
4734

被折叠的 条评论
为什么被折叠?



