【配送路径规划】遗传算法求解静态外卖骑手路径规划问题【含Matlab源码 2248期】

本文介绍了使用遗传算法解决静态外卖骑手路径规划问题,建立模型假设,包括顾客分布均匀、车辆按“对角”路径运行等,并详细阐述了遗传算法的设计,包括初始种群建立、适应值筛选、交叉变异操作。提供了部分Matlab源码,并展示了运行结果。
摘要由CSDN通过智能技术生成

⛄一、遗传算法求解静态外卖骑手路径规划问题

1 模型假设
外卖配送的实际运行是一个复杂的过程, 受诸多因素影响, 为了建立调度模型, 本文做如下假设。

(1) 外卖配送更多的是服务特殊群体, 所以本文认为外卖配送是一种预约型配送, 即在进行调度安排前, 己经获取了所有顾客的地理信息。

(2) 在实际运行中, 顾客的出行分布具有很强的时空特征, 但本文更注重方法论的介绍。所以, 假设服务区域内的顾客地理位置分布在时间和空间上都服从均匀分布。

(3) 外卖配送车辆的调度与路网条件息息相关, 为了简化模型以及便于说明设计思路, 忽略路网对调度的影响。Quadrifogli等己经证明“对角”路径能够反映车辆真实的运行情况。本文假设车辆按“对角”路径运行, 即车辆只能沿水平或垂直方向运行。

(4) 可配送车辆常用于低密度区域, 顾客购买总量小, 所以为了简化模型不考虑车辆的容量约束。

2 模型建立
外卖配送的车辆调度是在确定总的配送计划之后, 根据顾客的位置信息, 解决“每个车次服务哪些顾客, 怎么配送”的问题。外卖配送从运营者和顾客角度出发建立双层规划模型, 运营者希望在投入下能够服务更多的顾客, 顾客则希望送达的时间越短越好。

假如有一个取餐地点以及送餐地点n, 配送车辆每经过一段距离的配送成本c, 取餐地点和送餐地点距离dij, 能够参与配送的车辆数量为m, 把表示取餐地点的这个点当作0点, 送餐地点当作1, 2, …, n, 定义变量xijk, Sik为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值