【路径规划】蚁群算法机器人栅格地图最短路径规划【含Matlab源码 1618期】

本文介绍了蚁群算法和栅格地图在路径规划中的应用,详细阐述了蚁群算法的基本原理,并展示了如何在Matlab中实现10x10静态环境地图的创建,以及使用Dijkstra算法进行路径规划的示例。此外,还给出了部分源代码和2014a版Matlab的运行结果。
摘要由CSDN通过智能技术生成

在这里插入图片描述

⛄一、蚁群算法及栅格地图简介

1 蚁群算法
1.1 蚁群算法的提出
蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。遗传算法在模式识别、神经网络、机器学习、工业优化控制、自适应控制、生物科学、社会科学等方面都得到应用。
1.2 蚁群算法基本原理
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>