【ARMA时间序列分析】ARMA时间序列分析【含Matlab源码 2430期】

本文介绍了ARMA模型在平稳时间序列分析中的应用,详细阐述了ARMA模型的背景、建模步骤,并提供了部分Matlab源代码示例。通过对海浪数据的分析,展示了如何进行模型检验和预测。文章最后提到了使用的Matlab版本和相关参考文献。
摘要由CSDN通过智能技术生成

在这里插入图片描述

⛄一、ARMA模型

1 ARMA模型介绍及应用
对于平稳时间序列,自回归移动平均(ARMA)模型可用于研究时间经济变量的变化规律,ARMA(p,q)模型包括一个自回归过程AR§和一个移动平均MA(q)过程,其形式如下:
在这里插入图片描述
式(1)中:p,q分别表示滞后的阶数;u1是白噪声序列。

2 ARMA模型的背景知识介绍
ARMA在文献研究中被广泛应用于对时间序列的分析预测,由于大多数经济金融数据满足时间序列的特征,因此该模型尤其适用于研究经济学问题,是拟合满足平稳性约束的时间序列最经典的模型。ARMA 模型是由 AR 自回归过程和 MA 移动平均过程组成的自回归移动平均模型,其基本思想是通过揭示历史时间序列的运行规律,对未来的事物发展进行预测。

在 ARMA(p,q)模型的参数中,p代表自回归部分的滞后阶数,q代表移动平均部分的滞后阶数。通常AR

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值