
⛄一、贝叶斯网络及LSTM简介
1 贝叶斯网络
贝叶斯网络(Bayesian network),又称信念网络(Belief Network),或有向无环图模型(directed acyclic graphical model),是一种概率图模型,于1985年由Judea Pearl首先提出。它是一种模拟人类推理过程中因果关系的不确定性处理模型,其网络拓朴结构是一个有向无环图(DAG)。

贝叶斯网络的有向无环图中的节点表示随机变量{ X 1 , X 2 , . . . , X n }
它们可以是可观察到的变量,或隐变量、未知参数等。认为有因果关系(或非条件独立)的变量或命题则用箭头来连接。若两个节点间以一个单箭头连接在一起,表示其中一个节点是“因(parents)”,另一个是“果(children)”,两节点就会产生一个条件概率值。
例如,假设节点E直接影响到节点H,即E→H,
本文详细介绍了贝叶斯网络和卷积神经网络(CNN)的基础知识,并提供了Matlab源码实现数据回归预测。文章通过解释贝叶斯网络的结构和马尔科夫链原理,以及CNN的神经元模型和卷积、池化层的工作机制,展示了如何使用贝叶斯优化来调优CNN参数。最后,给出了部分Matlab代码实现和运行结果。
订阅专栏 解锁全文
766

被折叠的 条评论
为什么被折叠?



