【风电功率预测】卷积神经网络结合注意力机制的双向长短记忆网络CNN-BiLSTM-Attention风电功率回归预测(多输入单输出)【含Matlab源码 2806期】

本文介绍了一种结合卷积神经网络(CNN)、双向长短记忆网络(BiLSTM)和注意力机制的风电功率预测模型。模型通过CNN提取特征,BiLSTM捕获上下文信息,注意力机制动态融合重要信息。文章提供Matlab源码,并展示了模型的运行结果。
摘要由CSDN通过智能技术生成

在这里插入图片描述

⛄一、CNN-BiLSTM-Attention简介

1 卷积神经网络CNN简介
1.1 神经元
神经元是人工神经网络的基本处理单元, 一般是多输入单输出的单元, 其结构模型如图1所示.其中:xi表示输入信号;n个输入信号同时输入神经元j.wij表示输入信号xi与神经元j连接的权重值, bj表示神经元的内部状态即偏置值, yj为神经元的输出.输入与输出之间的对应关系可用下式表示:
在这里插入图片描述
图1 神经元模型
在这里插入图片描述
f (·) 为激励函数, 其可以有很多种选择, 可以是线性纠正函数 (Rectified Linear Unit, ReLU) [25], sigmoid函数、tanh (x) 函数、径向基函数等。

1.2 多层感知器
多层感知器

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值